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What’s so special about IQHE?

I High precision quantification of the Hall conductance
I Disorder plays a central and positive role
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Why study now 2DEGs in a magnetic field?

Experiments:

I New systems: graphene

I New effects: microwave induced zero-resistance states

I New probes: local sensing techniques

Mani et al., Nature (2002) Hashimoto et al., PRL (2008)
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Is IQHE that well understood theoretically?

Unclear and difficult aspects:

I Quantum Hall breakdown at low field, high current...
I Plateau transitions
I Precision of quantized Hall conductance?

But more pragmatically: how do we calculate stuff??

I Weak coupling expansion in random smooth potential:
invalid at high field! Raikh and Shahbazyan, PRB (1993)

I Edge state (scattering) picture:
powerful for transport, but not practical with disorder
Halperin PRB (1982), Büttiker PRB (1988)

I Guiding center (semi-classical) picture: Trugman PRB (1983)

often used in practice, limited to high temperature
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Summary

I Introduction: Landau levels and disorder

I The high magnetic field expansion:
I Coherent states Green’s functions formalism
I Systematic semiclassical expansion
I Quantum version of guiding center picture
I Open vs closed quantum mechanics at high field

I Experimental implications:
I Scanning Tunneling Spectroscopies
I Local transport equations

I Outlook
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Landau levels and disorder



Landau levels and disorder The high field expansion

Classical motion in high perpendicular magnetic field

Two “degrees of freedom” with different timescales:

I fast cyclotron motion: dθ
dt = ωc = eB

m?c
I slow drift velocity: vd = c

B E× ẑ

I Decoupling at B → +∞ B E

Transport:

I Disordered bulk: localization on closed equipotential lines
I Edges: delocalized skipping orbits
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Quantum: translation invariant Landau eigenstates

Free Hamiltonian: no disorder, no interactions
H0 = 1

2m?

(
−i~∇r − e

c A(r)
)2 with B = ∇× A

Landau states:
En,k = ~ωc(n + 1

2)

Ψn,k(x , y) = e iky exp
[
− (x−kl2B)2

2l2B

]
Hn

(
x−kl2B

lB

)
I Translationally invariant along y
I “Localized” along x = kl2B on a scale lB =

√
~c/eB

|Ψn,k1|
2

|Ψn,k2|
2

|Ψn,k3|
2
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Another solution: circular eigenstates

Circular states:
Em,l = ~ωc(l + m+|m|+1

2 ) = ~ωc(n + 1
2)

Ψl ,m(r , θ) = e imθrm exp
[
−r2

4l2B

]
Lm

l

(
r2

2l2B

)
I Rotationally invariant around the origin

I “Localized” on a scale lB along r

|Ψl,m2|
2

|Ψl,m3|
2

|Ψl,m1|
2

The absence of an external potential leads to a huge degeneracy!
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1D confinement

1D Parabolic potential:

H = H0 + V (x) = H0 + 1
2m?ω2

0x
2

Modified Landau states:

En,k = ~Ω

(
n +

1

2

)
+ V (kL2)

Ψnk(r) = e−iky exp

[
−

(
x − ωc

Ω kL2
)2

2L2

]
Hn

(
x − ωc

Ω kL2

L

)
where Ω =

√
ω2

c + ω2
0 ' ωc and L =

√
~/m?Ω ' lB

I Degeneracy is fully lifted by V (x)
I Wavefunction live around equipotential lines: X = kl2B
I Drift velocity: vy (X ) = 1

~
dEn,k

dk
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2D confinement

2D Parabolic potential: H = H0 + V (r) = H0 + 1
2m?ω2

0(x
2 + y2)

Fock-Darwin states:

Enl = ~Ω

(
n +

|l |+ 1

2

)
+

l

2
~ωc

' ~ωc

(
n +

1

2

)
+ ~

ω2
0

ωc
l

Ψn,l(r) = A

(
r√
2L

)|l |
L
|l |
n e−

r2

4L2

(
r2

2L2

)
e ilθ

√
2π

where Ω =
√

ω2
c + 4ω2

0 ' ωc and L =
√

~/m?Ω ' lB

I Energies are quantized

I ... but one recovers continuous drift picture at ωc � ω0
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Semi-classical guiding center picture

Basic idea: Trugman PRB (1983)

I treat cyclotron motion quantum mechanically:
allows Landau levels formation

I drift is described classically

How it’s usually done (with Landau states):

I X = kl2B : center of gaussian wavepacket
I Y = −il2B

d
dX : conjugate variable as [X ,Y ] = il2B

I Energy En,X = ~ωc(n + 1
2) + V (X ) if [X ,Y ] ' 0

Limitations:
I No quantization of energies for a closed system
I No irreversibility for an open system (QPC)
I Problems to formulate consistent transport theory
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Classical Hall effect

Local current density: j(r) = −ene(r)vd = − e
B neE× ẑ = −σxyE

−→ local Hall conductivity: σxy (r) = e
B ne(r)

For a homogeneous sample: I = GxyVxy

where Gxy = e
B ne is the Hall conductance

−→ Gxy gives information on the carriers charge and density
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Quantum effects on Hall transport

Back to conductance:
Gxy = e

B ne = e2

h
h
eB ne = e2

h ν

ν = h
eB ne = 2πl2Bne : dimensionless density (filling factor)

Landau level quantization: Em = ~ωc(m + 1
2)

with the cyclotron energy: ~ωc = 20meV at 10T for GaAs

Too naive picture of IQHE: successive filling of Landau level with
integer ν =

∑
m nF (Em − µ) leads to successive Gxy plateaus:

Gxy =
∑

m nF (Em − µ)

2 2.5 3 3.5 4 4.5 52

3

4

5

 T
 T
 T

µ/~ωc

G
x
y

[e
2
/h

]

T/~ωc = 0.001

T/~ωc = 0.1

T/~ωc = 0.01
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Homogeneous system

As a function of density:
I sharp Landau levels
I µ sticks to Em and jumps between LL

ρ(ω)

ωǫm−1 ǫm ǫm+1 νm− 1 m m + 1

µ

ǫm−1

ǫm+1

ǫm

Conductance:
No plateau!

2 2.5 3 3.5 4 4.5 52

3

4

5

ν

G
x
y

[e
2
/h

]
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Inhomogeneous system

With disorder: µ is pinned by bulk localized states

ν̄ =
∑
n

∫
d2r

Area
nF (Em − µ− V (r)) Localized states

Delocalized states

ρ(ω)

ωǫm−1 ǫm ǫm+1

2 2.5 3 3.5 4 4.5 52

3

4

5

 T
 T
 T

G
x
y

[e
2
/h

]

ǫF/~ωc

Γ/~ωc = 0.01

Γ/~ωc = 0.03

Γ/~ωc = 0.1

2 2.5 3 3.5 4 4.5 50.8

1

1.2

1.4  T
 T
 T

ǫF/~ωc

µ
/ǫ

F

Γ/~ωc = 0.1

Γ/~ωc = 0.03

Γ/~ωc = 0.01

Disorder is essential to plateaus formation!
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One more caveat...

Hall bar: quantization of σxy does not guarantee Gxy quantized

lB
r

W

ν(r)

1

I width W ∼1mm

I non-homogeneous region near edge of width lB ∼8nm

Deviation to quantization: of the order lB/W ∼ 10−5

−→ in contradiction with experiment: δGxy/Gxy < 10−9

Scattering transport theory (Landauer-Büttiker) is better!
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With disordered potential

Numerical solutions:
I Confirms the intuition
I Can be coupled to Landauer formalism
I But not very practical

V (r)

|Ψα(r)|2

Eα ≪ EF Eα < EF Eα ≃ EF

Is there a simple analytical approach at high magnetic field?

15/41



Landau levels and disorder The high field expansion

The high magnetic field expansion:

Coherent state Green’s function formalism

[Champel & Florens PRB (2007)]
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What is the small parameter?
At large magnetic field:

I Magnetic length: lB =
√

~c/eB =8nm at 10T
I Correlation length of the disordered potential:

ξ & 100nm in clean AsGa heterostructures

The random potential is smooth on the scale lB !

Remark: the idea of an lB/ξ expansion is not new

I Effective Hamiltonian at order l2B in the limit lB → 0
[Apenko & Lozovik J. Phys. (1984), Haldane & Yang PRL (1997)]

I Lowest Landau level projection
[Girvin & Jach PRB (1983), Jain & Kivelson PRB (1988)]

The challenge:
I Go beyond the strict lB/ξ → 0 limit
I Include Landau level mixing:

Crucial for transport since 〈n| j |n′〉 ∝ δn,n′±1
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Clues for a high magnetic field expansion
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Vortex (coherent) eigenstates

We need: states that can adapt to an arbitrary shape of V (r), with
no preferred symmetry
[Girvin & Jach PRB (1984)]

[Champel & Florens PRB (2007)]

|Ψm,R2
|2

|Ψm,R1
|2 |Ψm,R3

|2

Vortex states: Ψm,R(r) = 〈r|R,m〉

Em,R = ~ωc(m +
1

2
)

Ψm,R(r) = |r − R|m e im arg(r−R) exp

[
−(r − R)2 − 2i ẑ · (r × R)

4l2B

]
Remark: this is an overcomplete, coherent eigenstates basis!!

〈R1,m1|R2,m2〉 = δm1,m2 exp

[
−(R1 − R2)

2 − 2i ẑ · (R1 × R2)

4l2B

]
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Vortex Green’s functions

How to proceed:

I Define GR1,m1;R2,m2 = 〈R1,m1|(ω − Ĥ0 − V̂ + i0+)−1|R2,m2〉
I Use unicity and closure relation:∫

d2R

2πl2B

+∞∑
m=0

|m,R〉〈m,R| = 1̂

I Sandwich Dyson equation:

(ω − Em1 + i0+)GR1,m1;R2,m2 = 〈R1,m1|R2,m2〉

+
+∞∑

m3=0

∫
d2R3

2πl2B
〈R1,m1|V̂ |R3,m3〉GR3,m3;R2,m2

I Peculiar structure in the vortex coordinates

〈R1,m1|V̂ |R3,m3〉 = 〈R1,m1|R3,m3〉 vm1;m3

(
R1+R3

2 + i R3−R1
2 × ẑ

)
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The high magnetic field expansion

Systematic semiclassical expansion

[Champel, Florens & Canet PRB (2008)]



Landau levels and disorder The high field expansion

Solution of Dyson equation by lB expansion

I Important relation:

GR1,m1;R2,m2 = 〈R1,m1|R2,m2〉 gm1;m2

(
R1 + R2

2
+ i

R2 − R1

2
× ẑ

)
gm1;m2 depends on a single (complex) vortex coordinate!

I Expand in powers of lB : gm1;m2(R) =
∑+∞

n=0

(
lB√
2

)n
g

(n)
m1;m2(R)

I Perform integral over R3 and collect lnB terms: closed recursion

g
(n)
m1;m2(R) = g

(0)
m1;m2(R)

n−1∑
l=0

∑
j ,k,p

∑
m3

δn,2k+j+l

k!

δm1+p,m3+j−p

p!(j − p)!

(m1 + p)!√
m1!m3!

×[(∂X − i∂Y )k+j−p(∂X + i∂Y )pV (R)](∂X + i∂Y )kg
(l)
m3;m2(R)

Lowest order result: semi-classical guiding center result

g
(0)
m1;m2(R) =

δm1,m2
ω−Em1−V (R)−i0+
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How to get physical quantities at equilibrium?

Electronic Green function: G (r, r′) = 〈r|(ω − Ĥ0 − V̂ + i0+)−1|r′〉
Local observables:

I Local charge density: ρ(r) = −
∫

dω
π nF (ω)ImG (r, r)

I Local current density:

j(r) = −
∫

dω
π nF (ω)

[
e~

2m? (∇r′ −∇r) + i e2

m?c A
]
ImG (r, r′)∣∣r′=r

Change of representation: same trick as before

G (r, r′) =

∫
d2R1

2πl2B

∫
d2R2

2πl2B

∑
m1,m2

Ψ?
m2,R2

(r′)Ψm1,R1
(r)GR1,m1;R2,m2

G (r, r′) =

∫
d2R

2πl2B

∑
m1,m2

Ψ?
m2,R(r′)Ψm1,R(r)

+∞∑
k=0

1

k!

(
−

l2B
2

∆R

)k

gm1;m2(R)

Simple connexion to local vortex Green function g(R)
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Checking accuracy: local charge density
Quantum expansion: define ξm(R) = Em + V (R)− µ

ρQu.(r) =

∫
d2R

2πl2B

∑
m

nF [ξm(R)]|Ψm,R(r)|2 + O(l2B)

Semiclassical result: point-like wavefunction for lB = 0

ρSc.(r) =
1

2πl2B

∑
m

nF [ξm(r)]

Checking a on solvable 1D model: for kBT/~ωc = 0.2, 0.1, 0.01

0 5 10 150

1

2

3

Ex.
Qu.
Sc.

(a)

ρ
(x

)
[1

/2
π
l2 B

]

x/lB
0 5 10 150

1

2

3

Ex.
Qu.
Sc.

(b)

ρ
(x

)
[1

/2
π
l2 B

]

x/lB
0 5 10 150

1

2

3

Ex.
Qu.
Sc.

(c)

ρ
(x

)
[1

/2
π
l2 B

]
x/lB
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The high magnetic field expansion:

Quantum version of guiding center picture

[Champel & Florens arxiv:condmat (2009)]
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What’s missing in the strict lB expansion?

Zooming in: deviations from terms in |lB∇RV |2n associated to
contributions of order l2n

B ∆n
r ρ(r) ∼ ρ(r)

2 4 6
2

2.5

3

Ex.
Qu.
Sc.

ρ
(x

)
[1

/2
π
l2 B

]

x/lB

Main discrepancy: vortex states are almost correct at high field

New viewpoint: instead of expanding order by order in lB
I Resum all processes like |lpB∂p

RV (R)|n to infinite order in n,
but order by order in p
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How to do it?
Non crucial simplification: ~ωc = ∞ kills Landau level mixing
⇒ Vortex Green functions become diagonal in m

First truncation: keep all terms of order |lB∇RV (R)|n in gm

1 = (ω − Em − V (R) + i0+)gm(R) +
l2B
2
∇RV .∇Rgm

Solution: introduce a modified Green’s function hm(R)

gm(R) =
+∞∑
p=0

1

p!

(
l2B
4

∆R

)p

hm(R)

Electronic Green function: new “vortex-Hermite” states

G (r, r) =
+∞∑
m=0

∫
d2R

2πl2B
|Φm(R− r)|2 hm(R)

|Φm(R)|2 = 1
π m!l2B

∂m

∂sm
e−AsR2/l2B

1+s

∣∣∣∣
s=0

with As = (1− s)/(1 + s)
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Quantum formulation of the guiding center picture

Modified vortex-Hermite Green’s function:

Guiding center becomes exact: hm(R) = [ω + i0+−Em−V (R)]−1

Rigorous formulation of an early idea by [Trugman PRB (1983)]

Back to 1D model: use new expression in the local density

ρ∞Qu.(r) =
+∞∑
m=0

∫
d2R

2πl2B
|Φm(R− r)|2 nF (Em + V (R)− µ) + O(l2B)

2 4 6
2

2.5

3

Ex.
Qu.
Sc.
Qu.

ρ
(x

)
[1

/2
π
l2 B

]

x/lB

∞
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Need to go beyond the guiding center

Some non trivial questions:

I How to get quantized energies for a closed system?

I How to get irreversibility in an open system (QPC)?

Everything is encoded already in quadratic (curvature) terms!

Second truncation: keep all terms of order |l2B∂2
RV (R)|n in hm

1 =

[
ω + i0+ − Em − V (R)− 2m + 1

4
l2B∆RV

]
hm(R)

+
l4B
8

[
∂2

Y V ∂2
X + ∂2

XV ∂2
Y − 2∂X∂Y V ∂X∂Y

]
hm(R)

How do we solve this new EDP?
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Dynamics of equipotential lines

Mapping: set hm(R) = fm [E (R)] with E (R) = V (R)− V (R0)

1 =

[
(ω̃m + i0+ − E ) + (γE + η)

d2

dE 2
+ γ

d

dE

]
fm(E )

ω̃m = ω − Em − V (R0)− (m + 1/2)ζ

γ =
l4B
4

[∂XXV ∂YY V − ∂XY V ∂XY V ]|R=R0

η =
l4B
8

[∂XXV (∂Y V )2 + ∂YY V (∂XV )2 − 2∂XY V ∂XV ∂Y V ]|R=R0

ζ =
l2B
2

∆R V |R=R0

γ, related to the curvature of the potential, provide the damping!
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Solving the dynamical equation

Fourier transform gives the answer:

fm(E ) = −i

∫ +∞

0
dt

e−i(E+η/γ)τ(t)

cos(
√

γt)
e i(ω̃m+i0++η/γ)t

with τ(t) = (1/
√

γ) tan
(√

γt
)

Interpretation:

I γ > 0 (quantum dot): τ(t) is periodic ⇒ quantized energies!

I γ < 0 (QPC): 1/ cosh(
√
−γt) cutoff ⇒ irreversibility!

What was achieved: local quantum theory at high fields
[Champel & Florens arxiv:condmat (2009)]

Open problem (tough): non local aspects for arbitrary potential
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Experimental implications:

Scanning tunneling spectroscopy

Champel & Florens arxiv:condmat (2009)
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STS current

Generic expression:

ρSTS(µ, r,T ) =
1

2πl2B
Re

+∞∑
m=0

1

m!

∂m

∂sm

∫ +∞

0
dt

Tt

sinh [πTt]

×e
i [µ−Em−(m+1/2)ζ−V (r)]t+i η

γ
[t−τ(t)]− τ2(t)

4

As l2B |∇rV |2+4iητ(t)

A2
s +iAsζτ(t)−γτ2(t)

(1 + s) cos(
√

γt)
√

A2
s + iAsζτ(t)− γτ2(t)

∣∣∣∣∣∣∣
s=0

Remarks:

I Valid for any Landau level

I Valid for any potential locally described up to its second
derivatives

I Valid for high and low temperature
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Spectral properties

Model saddle point: V (R) = ω0XY

0.1

1

10

100
ρ
S
T

S
(µ

,r
,T

=
0)

0.5 0.6 0.7 0.8
µ/h̄ωc

x = 0
x = lB
x = 4lB

Quite different lineshapes/linewidths depending on tip position
(note spectral asymmetries)
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Interpretation

Various regimes
I Thermal dominated (semiclassical): ωT = πT

ρSTS(µ, r,T ) ≈ 1

2πl2B

sech2
(

µ−ωc/2−V (r)
2T

)
4T

I Drift dominated: ωdrift = lB |∇rV (r)|

ρSTS(µ, r,T ) ≈ 1

2πl2B

exp

[
−

(
µ−ωc/2−V (r)

ωdrift

)2
]

√
πωdrift

I Curvature dominated: ωsaddle = 2
√
−γ

ρSTS(µ, r,T ) ≈
P−1/2+ia(0)

2πl2B

sech
(

µ−ωc/2−V (r)
ωsaddle/π

)
√

2ωsaddle
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Temperature effects

0.1

1

10

100
ρ
S
T

S
(µ

,r
,T

)

0.5 0.6 0.7 0.8
µ/h̄ωc

x = 0
x = 4lB

Thermal smearing more effective near saddle-points
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What should one see?

T = 0 ωsaddle � T

−5

0

5

y
/l

B

−5 0 5

x/lB

−5

0

5

−5 0 5

x/lB

0

0.5

1

Champel & Florens condmat (2009) Hashimoto et al. PRL (2009)

True quantum tunneling states are hard to see experimentally!

33/41



Landau levels and disorder The high field expansion

Experimental implications:

Transport equations

[Champel, Florens & Canet PRB (2008)]
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Various transport regimes

Low temperature:

I Tunneling dominated

I Landauer-Büttiker is a good picture, but unpractical

I Open problem for vortex theory (non-locality)

High temperature:

I Landau level mixing dominated

I Guiding center is a good picture

Next question:

What about semiclassical transport?
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Local current density: semiclassical result
Current at leading order: for lB → 0

I Drift (conduction)

j
(0)
drift(r) =

e

h

+∞∑
m=0

nF [ξm(r)]∇rV (r)× ẑ

I Density gradient (diffusion) [Geller & Vignale PRB (1994)]

j
(0)
grad(r) =

e

h

+∞∑
m=0

~ωc

(
m +

1

2

)
∇rnF [ξm(r)]× ẑ

Sub-leading current: new terms!
[Champel, Florens & Canet PRB (2008)]

j
(2)
drift(r) = l2B

e

h

+∞∑
m=0

nF [ξm(r)]

[
(∇rV · ∇r)

~ωc
∇rV +

3

2

(
m +

1

2

)
∆r∇rV

]
×ẑ
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Local equilibrium: Ohm’s law

Total potential: V (r) = Veff(r) + eΦ(r)
I Veff : confinement and impurity (screened) potential
I Φ(r): local out-of-equilibrium potential

Local conductivity tensor: purely transverse at lB → 0

I j(r) = σ̂(r)E = −σH(r)∇Φ(r)× ẑ
I σH(r) =

∑
m nF [Em + Veff(r)− µ]

Transport equation: ∇.j = 0 (continuity equation) gives(
∇σH(r)×∇Φ(r)

)
.ẑ = 0

I Equipotentials coincide with lines of constant filling factor
I Indeterminacy at points where ∇σH(r) = 0
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Conduction beyond the drift contribution

I Non-local contribution to current:

δj(r) = l2B
e2

h

+∞∑
m=0

nF [ξm(r)]
3

2

(
m +

1

2

)
∆r∇rΦ× ẑ

Originates from quantum tunneling (negligeable at high T )

I Longitudinal and transverse corrections to the conductivity:

δσ̂(r) =
l2B

~ωc
σH(r)

(
−∂xyVeff ∂yyVeff

∂xxVeff ∂xyVeff

)
Local conductivities may not obey Onsager’s relation!

Transport equation: keeping local terms only

(∇rσH ×∇rΦ) · ẑ−
l2B

~ωc
σHTr

{
δσ̂.

(
∂xxΦ ∂xyΦ
∂xyΦ ∂yyΦ

)}
= 0
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Checking bulk conduction against Büttiker picture

T
E

A
G

ν ν

ν
′

µ3

µ1 µ4ν νν
′

µ2

Toy model: Veff(r) = Veff(0) + a x2

2 + b y2

2

I Non-trivial potential drop [for saddle point only (ab < 0)]:

Φ(r) =
[
A + B

∫ x/λ
0 dt exp(−t2)

] [
C + D

∫ y/λ
0 dt exp(−t2)

]
where λ2 = −2

l2B
~ωc

P
m nF (ξm(0))P
m n′F (ξm(0))

I Two-point conductance: G2P = e2

h σH(0) Edge state result!

Remark: the conductance is independent of microscopic aspects
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Scattering: a simple example

4 terminals with single ”scatterer”:

T
E

A
G µ3

µ1 µ4

I
ν νν ′

µ2

Transmissions:
T2←1 = ν, T3←2 = ν ′, T1←2 = ν − ν ′, etc...

Resistances:

I R14 = h
e2ν′

: two-point resistance

I R34 = h
e2ν

: Hall resistance

I R23 = h
e2 (

1
ν′ −

1
ν ): four-point resistance
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Transport: conduction vs. diffusion

Bottomline:

I Transport in IQHE regime may be investigated on the basis of
simple bulk equations

I Microscopic details of the equilibrium density and current
inhomogeneities are naturally taken into account:
practical approach

Interesting directions to investigate:

I General connection to edge state formalism

I Study bulk transport equations for complex geometries
(i.e. disordered)

I Role of non-local corrections: low temperature regime

I Coupling to self-consistent screening calculations
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Conclusion

I Vortex wavefunctions are the naturally selected quantum
states in the high field limit

I The mathematical foundation of vortex Green’s functions was
established:

I generates trivially the semiclassical expansion
I provides a fully quantum approach to guiding center ideas
I unifies closed and open systems (quantization vs.

irreversibility)

I Local equilibrium observables can be calculated accurately
from simple and controlled density functionals

I Semi-classical (high temperature) transport equations were
proposed and investigated for a simplified scattering problem
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