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Motivation
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Macroscopics of IQHE: transport

I High precision quantization of the Hall conductance
I Universal and non-universal features
I Disorder plays a central role in the phenomenon
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Microscopic view: local measurements

New STS experiment: Hashimoto et al., PRL (2008)

I InSb surface states form a 2DEG (deposited Cs)
I High resolution, low temperature STM
I QHE in LL0 at B=12T
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LDoS from STS spectra

(a)50nm (b) (c)

(e) (g)(f)

I Thin spectral lines: wavefunctions of width lB ∼ 7nm
I Disordered landscape: typical lengthscale ξ ∼ 40nm
I Percolation of lines at the threshold
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Some other remarks
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I wide structures: tunneling at saddle points?
I narrowing of Landau levels at high B

Aim: simple analytical theory for LDoS at high magnetic fields
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Standard theoretical approaches (I)

Wavefunctions
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Schroedinger equation

H = 1
2m?

[~
i ∇r − e

c A(r)
]2

+ V (r) with B = ∇× A

V (r)

|Ψα(r)|2

Eα . Ecr.Eα ≪ Ecr.
Eα ≃ Ecr.

STS LDoS:
ρSTS(ε, r,T ) ∝

∑
α

|Ψα(r)|2 ∂

∂ε
nF (Eα − ε)
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Comparison theory/experiment

Qualitative LDoS: Hashimoto et al., PRL (2008)
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but...
I Expensive numerical method
I Physical scales at play: non obvious!
I Unpractical inverse problem ρSTS(r) → V (r)
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Standard theoretical approaches (II)

Semiclassical limit
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Classical motion in high perpendicular magnetic field

Two “degrees of freedom” with different timescales:

I fast cyclotron motion: dθ
dt = ωc = eB

m?c
I slow drift velocity: vd = c

B E× ẑ

I Decoupling at B → +∞ B E

Motion:

I Disordered bulk: localization on closed equipotential lines
I Edges: delocalized skipping orbits
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Semi-classical guiding center picture

Basic idea:

I Quantum mechanical cyclotron motion: Landau levels
I Drift motion is described classically

New coordinates:

I x̂ = X̂ + δx̂ = X̂ + v̂y/ωc

I ŷ = Ŷ + δŷ = Ŷ − v̂x/ωc

I Hamiltonian: H = m?v̂2/2 + V (X̂ + δx̂ , Ŷ + δŷ)

Quantization:

I [X̂ , Ŷ ] = il2B and [v̂x , v̂y ] = −i~ωc/m?

I Magnetic length: lB =
√

hc/eB
I Cyclotron frequency: ωc = eB/m?c

9/29



Standard approaches High magnetic field expansion

Implication for the LDoS

High field limit: B → +∞
I Hamiltonian: H ' m?v̂2/2 + V (X ,Y )

I Energy: En,r = ~ωc(n + 1
2) + V (r)

I LDoS: ρSTS(ε, r,T ) ∝
∑

n
∂
∂εnF (En,r − ε)

Limitations:

I Classical states with no transverse spatial spread (lB = 0)
→ LDoS peaks of constant width (set by temperature T )

I No quantization of energies for a closed system

I No dissipation associated to tunneling
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What states?
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Translation invariant Landau eigenstates

Free Hamiltonian: no disorder, no interactions
H0 = 1

2m?

(
−i~∇r − e

c A(r)
)2 with B = ∇× A

Landau states:
En,k = ~ωc(n + 1

2)

Ψn,k(x , y) = e iky exp
[
− (x−kl2B)2

2l2B

]
Hn

(
x−kl2B

lB

)
I Translationally invariant along y
I “Localized” along x = kl2B on a scale lB =

√
~c/eB

|Ψn,k1|
2

|Ψn,k2|
2

|Ψn,k3|
2
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1D confinement

1D Parabolic potential:

H = H0 + V (x) = H0 + 1
2m?ω2

0x
2

Modified Landau states:

En,k = ~Ω

(
n +

1

2

)
+ V (kL2)

Ψnk(r) = e−iky exp

[
−

(
x − ωc

Ω kL2
)2

2L2

]
Hn

(
x − ωc

Ω kL2

L

)
where Ω =

√
ω2

c + ω2
0 ' ωc and L =

√
~/m?Ω ' lB

I Degeneracy is fully lifted by V (x)
I Wavefunction live around equipotential lines: X = kl2B
I Drift velocity: vy (X ) = 1

~
dEn,k

dk
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Circularly invariant eigenstates

Circular states: (no disorder, no confinement)

Em,l = ~ωc(l + m+|m|+1
2 ) = ~ωc(n + 1

2)

Ψl ,m(r , θ) = e imθrm exp
[
−r2

4l2B

]
Lm

l

(
r2

2l2B

)
I Rotationally invariant around the origin

I “Localized” on a scale lB along radius

|Ψl,m2|
2

|Ψl,m3|
2

|Ψl,m1|
2

The absence of an external potential leads to a huge degeneracy!
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2D confinement

2D Parabolic potential: H = H0 + V (r) = H0 + 1
2m?ω2

0(x
2 + y2)

Fock-Darwin states:

Enl = ~Ω

(
n +

|l |+ 1

2

)
+

l

2
~ωc

' ~ωc

(
n +

1

2

)
+ ~

ω2
0

ωc
l

Ψn,l(r) = A

(
r√
2L

)|l |
e−

r2

4L2 L
|l |
n

(
r2

2L2

)
e ilθ

√
2π

where Ω =
√

ω2
c + 4ω2

0 ' ωc and L =
√

~/m?Ω ' lB

I Energies are quantized
I ... but one recovers continuous drift picture at ωc � ω0
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With a random potential
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Vortex (coherent) eigenstates

We need: states that can adapt to an arbitrary shape of V (r), with
no preferred symmetry
[Girvin & Jach PRB (1984)]

[Champel & Florens PRB (2007)]

|Ψm,R2
|2

|Ψm,R1
|2 |Ψm,R3

|2

Vortex states: Ψm,R(r) = 〈r|R,m〉

Em,R = ~ωc(m +
1

2
)

Ψm,R(r) = |r − R|m e im arg(r−R) exp

[
−(r − R)2 − 2i ẑ · (r × R)

4l2B

]
Remark: this is an overcomplete, coherent eigenstates basis!!

〈R1,m1|R2,m2〉 = δm1,m2 exp

[
−(R1 − R2)

2 − 2i ẑ · (R1 × R2)

4l2B

]
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The high magnetic field expansion:

Coherent state Green’s function formalism

[Champel & Florens PRB (2007)]

[Champel, Florens & Canet PRB (2008)]

[Champel & Florens PRB (2009)]



Standard approaches High magnetic field expansion

What is the small parameter?
At large magnetic field:

I Magnetic length: lB =
√

~c/eB =7nm at 12T

I Correlation length of the disordered potential:
ξ > 100nm in clean AsGa heterostructures

The random potential is smooth on the scale lB !

Remark: the idea of an lB/ξ expansion is not new

I Effective energy up order l2B in the limit lB → 0
[Apenko & Lozovik J. Phys. (1984), Haldane & Yang PRL (1997)]

I LDoS is still too sharply peaked

The challenge: Go beyond the strict lB → 0 limit

I Develop a theory controlled at small non-zero lB/ξ
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Vortex representation

Real space Green function: G (r, r′) = 〈r|(ω − Ĥ0 − V̂ + i0+)−1|r′〉
I LDoS: ρSTS(ε, r,T ) ∝−

∫
dω
π

∂
∂ωnF (ω − ε)ImG (r, r)

Local vortex Green function:

g̃m;m′(R) = e−(l2B/2)∆R〈R,m|(ω − Ĥ0 − V̂ + i0+)−1|R,m′〉

Connexion:

G (r, r′) =

∫
d2R

2πl2B

∑
m1,m2

g̃m1;m2(R)e−(l2B/4)∆R
[
Ψ?

m2,R(r′)Ψm1,R(r)
]

Advantages:

I Wave-function spread naturally encoded
I g̃(R) contains all the information about the spectrum
I g̃(R) can be systematically developed in powers of lB
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Quantum formulation of the guiding center picture

Locally flat (yet arbitrary) potential:

Guiding center becomes exact: g̃m(R) = [ω + i0+−Em−V (R)]−1

Rigorous formulation of the early idea by [Trugman PRB (1983)]

G (r, r′) =

∫
d2R

2πl2B

∑
m

e−(l2B/4)∆R

[
Ψ?

m,R(r′)Ψm,R(r)
]

ω + i0+ − Em − V (R)

I Powerful expression describing the physics in the Landau tails
[Raikh-Shahbazyan 1995, Fogler-Chklovskii 1998]

I log |G (r, r′)| = −|r − r′|/Lloc.
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Need to go beyond the guiding center

Some missing quantum effects:

I How to get quantized energies for a closed system?

I How to get dissipation at tunneling trajectories?

Everything is encoded already in quadratic (curvature) terms!

Truncate Dyson: keep all terms of order |l2B∂2
RV (R)|n

1 =

[
ω + i0+ − Em − V (R)− 2m + 1

4
l2B∆RV

]
g̃m(R)

+
l4B
8

[
∂2

Y V ∂2
X + ∂2

XV ∂2
Y − 2∂X∂Y V ∂X∂Y

]
g̃m(R)

This EDP can be exactly solved! Champel & Florens PRB (2009)
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Experimental implications:

Scanning tunneling spectroscopy
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STS current: interpretation (I)

Generic expression in lowest LL (m = 0):

ρSTS(ε, r,T ) =
1

2πl2B
Re

∫ +∞

0
dt e i [ε−E0−ζ/2−V (r)]t

× Tt

sinh [πTt]

e
i η

γ
[t−τ(t)]− τ2(t)

4

l2B |∇rV |2+4iητ(t)

1+iζτ(t)−γτ2(t)

cos(
√

γt)
√

1 + iζτ(t)− γτ2(t)

LDoS lines: Fourier transform peaks the LDoS around lines of
constant (effective) energy: V (r) + ζ(r)/2 = ε
Here: ζ(r) = (l2B/2)∆rV [Haldane & Yang PRL (1997)]

LDoS width: set by two obvious cutoffs
I Thermal cutoff at scale ωtherm. = πT
I Drift cutoff at scale ωdrift = lB |∇rV |
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STS current: interpretation (II)
Gaussian curvature effects: γ(r) =

l4B
4

[∂xxV ∂yyV − ∂xyV ∂xyV ]

ρSTS(ε, r,T ) =
1

2πl2B
Re

∫ +∞

0
dt e i [ε−E0−ζ/2−V (r)]t

× Tt

sinh [πTt]

e
i η

γ
[t−τ(t)]− τ2(t)

4

l2B |∇rV |2+4iητ(t)

1+iζτ(t)−γτ2(t)

cos(
√

γt)
√

1 + iζτ(t)− γτ2(t)

I Positive curvature: confinement

I Periodic function of time:
τ(t) = (1/

√
γ) tan

(√
γt

)
→ quantized energy levels!
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STS current: interpretation (II)
Gaussian curvature effects: γ(r) =

l4B
4

[∂xxV ∂yyV − ∂xyV ∂xyV ]

ρSTS(ε, r,T ) =
1

2πl2B
Re

∫ +∞

0
dt e i [ε−E0−ζ/2−V (r)]t

× Tt

sinh [πTt]

e
i η

γ
[t−τ(t)]− τ2(t)

4

l2B |∇rV |2+4iητ(t)

1+iζτ(t)−γτ2(t)

cosh(
√
−γt)

√
1 + iζτ(t)− γτ2(t)

I Negative curvature: tunneling

I New cutoff energy at scale
→ Lifetime! ωsaddle = 2

√
−γ(r)
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Zero temperature LDoS for saddle point

0.1

1

10

100

ρ
S
T

S
(ε

,r
,T

=
0
)

0.5 0.6 0.7 0.8
ε/h̄ωc

x = 0
x = lB
x = 4lB

Quite different lineshapes/linewidths depending on tip position
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Interpretation

Various regimes
I Thermal dominated (semiclassical): ωtherm. = πT

ρSTS(ε, r,T ) ≈ 1

2πl2B

sech2
(

ε−ωc/2−V (r)
2T

)
4T

I Drift dominated: ωdrift = lB |∇rV (r)|

ρSTS(ε, r,T ) ≈ 1

2πl2B

exp

[
−

(
ε−ωc/2−V (r)

ωdrift

)2
]

√
πωdrift

I Curvature dominated: ωsaddle = 2
√
−γ

ρSTS(ε, r,T ) ≈
P−1/2+ia(0)

2πl2B

sech
(

ε−ωc/2−V (r)
ωsaddle/π

)
√

2ωsaddle
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Temperature effects on LDoS

Increasing temperature: T/ωc = 0, 0.02, 0.1
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Thermal smearing more effective near saddle-points
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What should one see experimentally?

T = 0 ωsaddle . T
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Champel & Florens condmat (2009) Hashimoto et al. PRL (2009)

I Thermal smearing is more important near saddle points

I True quantum tunneling states are hard to see experimentally!
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How controlled?
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with γ (exact)

γ = 0

−

∑
m

∂

∂ε
nF (Em + V (r)− ε)

I Existence of a hierachy of local energy scales

I Previous LDoS expression valid down to scale Vtyp.(lB/ξ)3
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Conclusion

I The mathematical formulation of a quantum guiding center
theory was established

I Closed and open systems (quantization vs. tunneling) can be
unified in this picture

I Local equilibrium observables can be calculated accurately
from simple and controlled density functionals

I A generic expression for the LDoS at high magnetic field was
proposed
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Perspectives

I Quantitative comparison to STS experiments

I Direct application to self-consistent (Hartree-Fock or LDA)
calculations for 2DEGs

I Correlate local to global properties: transport near the
percolation threshold
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