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Summary

I Local spectroscopies of quantum Hall samples
I Local density of states (LDoS) measurements by STM

I Quantum formulation of the guiding center picture

I Revealing the nodal structure of Landau states

I Predictions for two-point correlations of the LDoS

I Percolating transport in the high temperature regime of
quantum Hall transitions

I Effective medium approach to transport critical exponents

I Scaling function of σxx(T ,B) at high temperature

I Comparison to experiments
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Motivation: from macroscopics to
microscopics of QHE
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Macroscopics of IQHE: transport

I High precision quantization of the Hall conductance
I Universal and non-universal features
I Disorder plays a central role in the phenomenon
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Microscopic view: local measurements

New STM experiment: Hashimoto et al., PRL (2008)

I InSb surface states form a 2DEG (deposited Cs)
I High resolution, low temperature STM
I QHE in LL0 at B=12T
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Classical motion in high perpendicular magnetic field

Two “degrees of freedom” with different timescales:

I fast cyclotron motion: dθ
dt = ωc = eB

m?c
I slow drift velocity: vd = c

B E× ẑ

I Decoupling at B → +∞ B E

Motion:

I Disordered bulk: localization on closed equipotential lines
I Sharp edges: delocalized skipping orbits
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LDoS spatial maps at various energies Hashimoto et al., PRL (2008)

(a)50nm (b) (c)

(e) (g)(f)

I Thin spectral lines: wavefunction width lB =
√

~c/eB ' 7nm
I Disordered landscape: typical lengthscale ξ ' 40nm
I Percolation of wavefunction at the Landau band center
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A closer look on energy and space dependence

(d)
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I LDOS shows well-defined LLs with narrowing energy width at
increasing B

I Successive LLs have different spatial energy dispersion
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Standard theoretical approaches (I)

Wavefunctions
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Schrödinger equation

H = 1
2m?

[~
i ∇r − e

c A(r)
]2

+ V (r) with B = ∇× A

V (r)

|Ψα(r)|2

Eα . Ecr.Eα ≪ Ecr.
Eα ≃ Ecr.

STS LDoS:
ρSTS(ε, r,T ) ∝

∑
α

|Ψα(r)|2 ∂

∂ε
nF (Eα − ε)
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Comparison theory/experiment

Numerical simulations: Hashimoto et al., PRL (2008)
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reproduce semi-quantitatively the data
but...

I Expensive numerical method
I Physical scales at play: non obvious!
I Unpractical inverse problem ρSTS(ε, r,T )→ V (r)

Aim: simpler analytical theory
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Standard theoretical approaches (II)

Semiclassical limit
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Semi-classical guiding center picture

Basic idea:

I Quantum mechanical cyclotron motion: Landau levels
I Drift motion is described classically

New coordinates:

I x̂ = X̂ + δx̂ = X̂ + v̂y/ωc

I ŷ = Ŷ + δŷ = Ŷ − v̂x/ωc

I Hamiltonian: H = m?v̂2/2 + V (X̂ + δx̂ , Ŷ + δŷ)

Quantization:

I [X̂ , Ŷ ] = i lB
2 and [v̂x , v̂y ] = −i~ωc/m?

I Magnetic length: lB =
√

~c/eB
I Cyclotron frequency: ωc = eB/m?c
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Implication for the LDoS

Semi-classical high field limit: ωc → +∞ and lB → 0
I Hamiltonian: H ' m?v̂2/2 + V (X ,Y )
I Classical guiding center: [X ,Y ] = 0
I Energy: En,R = ~ωc(n + 1

2) + V (R)

I LDoS: ρSTS(ε, r,T ) ∝
∑

n
∂
∂εnF (En,r − ε)

Limitations:
I Same effective potential En,R for all n (incorrect)
I Classical states that are infinitely sharp (lB = 0)
→ LDoS peaks width is set by temperature T (incorrect)

Quantum high field limit: ωc → +∞ only

I [X̂ , Ŷ ] = il2B : Phase space is real space!
This suggests the use of coherent states
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The high magnetic field expansion:

Coherent state Green’s function formalism

[Champel & SF PRB (2007)]

[Champel, SF & Canet PRB (2008)]

[Champel & SF PRB (2009)]
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What states with a random potential?
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Vortex coherent eigenstates

We need: states that can adapt to an arbitrary shape of V (r), with
no preferred symmetry
[Jain & Kivelson PRB (1988)]

[Champel & SF PRB (2007)]

|Ψm,R2
|2

|Ψm,R1
|2 |Ψm,R3

|2

Vortex states: Ψm,R(r) = 〈r|R,m〉

Em,R = ~ωc(m +
1

2
)

Ψm,R(r) = |r − R|m e im arg(r−R) exp

[
−(r − R)2 − 2i ẑ · (r × R)

4l2B

]
Remark: this is an overcomplete, coherent eigenstates basis!!

〈R1,m1|R2,m2〉 = δm1,m2 exp

[
−(R1 − R2)

2 − 2i ẑ · (R1 × R2)

4l2B

]
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What are the small parameters?

At large magnetic field:

I Magnetic length: lB =
√

~c/eB =7nm at 12T
I Correlation length of disordered potential: ξGaAs > 40nm

⇒ The random potential is smooth on the scale lB !

I Cyclotron energy: at B = 10T, ~ωInSb
c = 700K and

~ωGaAs
c = 200K

I Typical disorder variation:
√〈

V 2
〉
' 200K for surface of InSb

(much less in GaAs)

⇒ Landau levels decouple!

Remark: previous authors have used a strict lB/ξ expansion
[Apenko & Lozovik J. Phys. (1984), Haldane & Yang PRL (1997)]

Challenge: develop a theory controlled at small but non-zero lB/ξ

14/39



Local density of states Guiding center theory Nodal structure LDoS correlations Percolating transport

Vortex Green’s functions

Real space Green function: G (r, r′) = 〈r|(ω − Ĥ0 − V̂ + i0+)−1|r′〉
I LDoS: ρSTS(ε, r,T ) ∝−

∫
dω
π

∂
∂ωnF (ω − ε)ImG (r, r)

Local vortex Green function:

gm;m′(R) = e−(l2B/4)∆R〈R,m|(ω − Ĥ0 − V̂ + i0+)−1|R,m′〉

Connexion to real space observables: (exact relation)

G (r, r′) =

∫
d2R

2πl2B

∑
m1,m2

gm1;m2(R)e−(l2B/4)∆R
[
Ψ?

m2,R(r′)Ψm1,R(r)
]

Advantages:

I Wave-function transverse spread on scale lB naturally encoded

I g(R) can be systematically developed in powers of lB/ξ
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Guiding center and cyclotron motion decoupling
Vortex view of LDoS: gm,m′ = gmδm,m′ diagonal at large ωc

ρ(r,E ) = − 1

π
Im

∫
d2R

2πl2B

+∞∑
n=0

Fn(R− r) gn(R,E )

with structure factor : Fn(R) =
(−1)n

πl2B
Ln

(
2R2

l2B

)
e−R2/l2B ,

Interpretation: quantum dynamics of the electron results from
convolution of guiding center drifting and cyclotron orbit

I LDoS factorizes in momentum-space:
ρ̃(q,E ) = − 1

π Im
∑+∞

n=0 F̃n(q)g̃n(q,E )

I Fn lives on small scale lB , g̃n on large scale ξ

I Fn encodes the nodal structure of Landau levels

Question: can we unveil the nodes in the experiment?
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Nodal structure of Landau levels
Hashimoto, Champel, SF, Sohrmann, Wiebe, Hirayama, Roemer,

Wiesendanger, Morgenstern, arXiv (2012)
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Real space LDoS data at B = 6T
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I 4 successive LLs are observed (spin resolved)

I The drift trajectories are blurred in the high LLs
. . . but no obvious signature of the nodal structure
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Momentum-space LDoS data at B = 6T

I Structures appear at scale 1/lB ' 0.1nm−1

I Spectra are rotationnally invariant

I LLn shows n kinks in the momentum-dependence

I Good comparison experiment/simulations
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Extraction of the nodes

Comparison with guiding center theory:

ρ̃(q,E ) = − 1

π
Im

+∞∑
n=0

F̃n(q)g̃n(q,E )

Kinks in ρ̃(q,E ) follow the nodes of F̃n(q)

Conclusion:

I the nodal structure of LLs is
robust to disorder

I Key property of quantum Hall states!
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Can we see the nodes in real space?
Trick: bandpass for momenta |q| ' 1/lB in ρ̃(q,E ) and Fourier
transform back to real space

50nm50nm
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e

f

LL1

LL2

Simul.: raw data Simul.: filtered data Exp.: filtered data

20 nm

20 nm

This improves resolution: shadow lines appear!
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Correlations of the LDoS
Champel, SF, Raikh, PRB (2011)



Local density of states Guiding center theory Nodal structure LDoS correlations Percolating transport

Theory at finite lB

Dyson equation: simpler at ωc → +∞ (no Landau level mixing)

(ω − Em + i0+)gm(R) = 1 + vm(R) ? gm(R)

where ? = exp
[
i
l2B
2

(←−
∂ X
−→
∂ Y −

←−
∂ Y
−→
∂ X

)]
: star product

Rigorous phase space (=real space) quantization!

Effective potential: vm(R) =
∫

d2u Fm(R− u)V (u)

Check with classical limit:
I Take lB → 0 and m→ +∞ with Lm = lB

√
2m + 1 fixed

I ṽm(R) =
∫

d2u δ(|R− u| − Lm)V (u): classical orbit (OK)

Solving Dyson equation: g̃m(R) = [ω + i0+ − Em − ṽm(R)]−1

up to curvature terms of order (lB/ξ)2
√〈

V 2
〉
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Effective potential in the experiment

Spatial variation of the LDoS in InSb: Hashimoto et al. PRL (2009)

I Well-separated Landau levels

I Spin resolved

I Potential amplitude shrinks with
increasing LL index and decreasing B
(since lB grows)

I Prospects:
I Get bare disoder V (R) from v0(R)
I Test relations between vm(R)’s:

v1(R) = ~ωc + [1 + (l2B/2)∆R]v0(R)
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How controlled is the theory?

Sample (disorder) averaged DoS: 〈ρ(r, ω)〉
I The lowest order vortex Green’s function is exact at ξ � lB
I Test: opposite limit ξ � lB analytically solved by Wegner
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〈ρ
(r

,
ω
)〉

−4 −2 0 2 4

(ω − E0)/ωc

Lowest order vortex result

Wegner’s solution at ξ/lB = 0

I Lowest order result already quite good and improves
(asymptotic) by getting higher order corrections.

I Small parameter = l2B/(ξ2 + 4l2B)
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Geometrical interpretation of spatial LDOS correlations

Definition: perform the following sample averaging

χ(|r1 − r2|, ω1, ω2) ≡ 〈ρ(r1, ω1)ρ(r2, ω2)〉 − 〈ρ(r1, ω1)〉 〈ρ(r2, ω2)〉

Overlap of quantum rings: consider LLn with n > 0
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Area for c) > Area for b) ⇒ χ peaks again when |r1 − r2| ' 2RL

Robust way to reveal the nodes in real space!
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Computation of the LDoS correlations
Procedure:

〈ρ(r1, ω1)ρ(r2, ω2)〉 =

∫
d2R1

2πl2B

∫
d2R2

2πl2B

+∞∑
n1=0

+∞∑
n2=0

Fn1(R1−r1)Fn2(R2−r2)

×
∫
dt1
2π

∫
dt2
2π e i(ω1−En1 )t1+i(ω2−En2 )t2

〈
e−i [Vn1 (R1)t1+Vn2 (R2)t2]

〉
This can be evaluated analytically!

Spatial dependence: confirms previous expectations

0
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0.4

0.6

χ
(r

,ω
,ω

)

0 1 2 3 4 5 6
r/lB

ω = E0

ω = E1

ω = E2

⇒ robust view (sample averaged) of the “nodes” in real space
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Energy dependence
DoS vs LDoS correlations at equal position:

0

0.2

0.4

0.6

〈ρ
(r

,
ω
)〉

0 1 2 3 4
ω/ωc

ξ/lB = 5

0

0.2

0.4

0.6

χ
(r

=
0,

E
1
,ω

)

0 1 2 3 4
ω/ωc

I DoS
〈
ρ(ω)

〉
has broad peaks with width

√〈
V 2

〉
I χ(ω) has narrow resonances with width (lB/ξ)

√〈
V 2

〉
I Positive correlations if ∆ω ' ~ωcn, negative otherwise

Prospects:
I Compare analytic theory with experiments and numerics
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Percolating transport in the quantum
Hall regime

Flöser, SF, Champel, PRL (2011)
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Status of transport in IQHE

Origin of the percolation problem:

I Disorder induces density inhomogeneities

I Guiding center trajectories follow equipotential contours

Vxx

Vxy

I I

I Percolation physics plays a key role at the plateau transitions
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Available approaches for transport

Fully quantum mechanical: low temperature regime

I Coherent tunneling between valleys

I Solve numerically Schrödinger equation (expensive)

I Use Kubo formula or Landauer formalism

I Does quantum percolation explain experiments? (unsettled)

Semiclassical guiding center approach: high temperature regime

I Incoherent tunneling between valleys

I Local Ohm’s law: j(r) = −σ̂(r).∇rΦ(r)

I Drift-diffusion local conductivity σ̂(r) (next slide)

I Solve continuity equation ∇r.j(r) = 0
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Drift-diffusion model for IQHE
Dissipative part (phonons): σxx(r) = σ0

Semiclassical drift part: σxy (r) = e2

h

∑
m nF (Em + V (r))

I Smooth disorder ⇒ Em(R) = ~ωc(m + 1/2) + V (R)
I Current: j(R) = −en(R)vdrift = e2

h 2πl2Bn(R)E× ẑ
with n(R)=density of filled states

Theoretical challenge: large Hall conductivity fluctuations

∑

.

2e
2

h

0
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σ
L
[e

2
/h

]
σ
H
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2
/h

]
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Current follows equipotential lines at σ → 0 :

σ0 �
√〈

δσ2
xy

〉
' 2e2/h
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Classical percolation problem for IQHE
Pure drift: limit σ0 = 0

I Closed trajectories do not contribute to transport
I Percolating trajectories must go through saddle points
⇒ drift velocity vd = − ec

B ∇V × ẑ vanishes!

Extra processes (encoded in σ0) are required for transport

Expectations for longitudinal conductivity: power law at small σ0

σxx ∝ σ1−κ
0

〈
δσ2

xy

〉κ/2
with κ transport percolation exponent

Conjecture: κ = 10/13 ' 0.7692 [Isichenko RMP (1992),

Simon&Halperin PRL (1994)]

Goal:
I Compute κ microscopically
I Obtain scaling form of σxx(T ,B) in order to extract critical

exponent from experimental data
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High temperature conductivity model

Longitudinal component: [Zhao & Feng PRL (1993), Floeser et al.]

σ0(T ) = Aph.T
(phonon contribution)

∫

Hall component: at T �
√〈

V 2
〉

σxy (r) ' e2

h

∑
m[nF (Em) + V (r)n′F (Em)] has Gaussian fluctuations

At plateau transition, one finds: δσxy (r) ' e2

h

[
1

4T + 1
~ωc

]
V (r)

Scaling function: σxx ∝ [σ0(T )]1−κ
[

e2

h

√〈
V 2

〉]κ [
1

4T + 1
~ωc

]κ

I σxx ∝ T 1−2κ ' T−0.5 at T < ~ωc/4
I σxx ∝ T 1−κ ' T 0.2 at T > ~ωc/4

σxx should go through a minimum at T ' ~ωc/4
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Comparison to experiments

[Data from B. Piot (unpublished)]
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Peak conductivity vs temperature

IQH transition:
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Examine σpeak
xx (T )

for three IQHE
transitions:
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T = 1.2K
T = 47K

I Two power-laws: T 1−2κ = T−0.5 (low T )
T 1−κ = T 0.2 (high T )

⇒ crossover from classical to quantized cyclotron motion
I The minimum appears as predicted (~ωc is not fitted)
I Quantitative agreement with the scaling function for σxx(T )

We extract: κ = 0.73± 0.03
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Anomalous magneto-transport
Prediction of percolation theory: Polyakov et al. PRB (2001); Flöser,

SF, Champel PRL (2011). σxx ∝ B−κ at T > ~ωc/4 ⇒ ρxx ∝ B2−κ

This is very different from Drude result: σxx ∝ B−2 and ρxx ∝ B0

Experimental data: taken at T = 47K
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Experimental Data

Percolation: σxx ∝ B−κ

Drude: σxx ∝ [1 + (ωcτ)2]−1

Clear crossover from Drude to classical percolating transport!
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Low vs high field & Low vs high temperature

High temperature regime: onset of QHE at B & 1T

T = 1.2K
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Low temperature regime: onset of classical percolation at B & 1T

T = 47K
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Similar crossover from rough
to smooth disorder?
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Computation of transport exponent κ
Flöser, SF, Champel, PRL (2011)
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How to compute κ?
Why is it difficult? The transport equation is ill-defined at σ0 = 0
⇒ a small σ0 expansion is not possible

Effective conductivity formalism: [Dreizin & Dykhne JETP (1972),

Stroud PRB (1975)]. Decompose σ̂(r) = σ̂0 + δσ̂(r) and aim to
solve:

∇ · [σ̂0∇Φ(r)] = −∇ · [δσ̂(r)∇Φ(r)]

Introduce Green’s function: ∇ · [σ̂0∇G (r, r′)] = −δ(r − r′)

After some manipulation: σ̂eff = σ̂0 +
〈
χ̂
〉

with χ̂(r) = δσ̂(r) + δσ̂(r)
∫
dd r ′ Ĝ0(r, r′)χ̂(r′)

and
[
Ĝ0

]
ij

= ∂
∂ri

∂
∂rj

G (r, r′)

Idea: iterating the equation for
〈
χ̂
〉

allows to expand the
conductivity perturbatively in powers of 1/σ0
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General formalism

Disorder averaging the conductivity:

〈χ̂(r)〉 = 〈δσ̂(r)〉+
∫

dd r1〈δσ̂(r)Ĝ0(r, r1)δσ̂(r1)〉+∫
dd r1

∫
dd r2〈δσ̂(r)Ĝ0(r, r1)δσ̂(r1)Ĝ0(r1, r2)δσ̂(r2)〉+ . . .

〈χ̂(r)〉 =
r r1

+ +
r r1 r2 r3r r1 r2 r3

+...

Result at six-loop order:

σxx = σ0+
〈
χ
〉

= σ0+
∞∑

n=1

an
〈δσ2〉n

σ2n−1
0

Order Method Coefficient an

1 Analytical 1
2

2 Analytical 1
8
− 1

2
log(2)

3 Analytical 0.2034560502
4 Numerical −0.265 ± 0.001
5 Numerical 0.405 ± 0.001
6 Numerical −0.694 ± 0.001
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Padé resummation of the series
Method: extrapolate series to strong coupling σ0 → 0

Order Method Exponent κ

2 Padé 0.72± 0.09
4 Padé 0.779± 0.006
4 n-fit 0.767± 0.002
∞ Conjecture 10/13 ' 0.7692

0

1

2

3

σ
x
x

[e
2
/h

]

0 0.5 1 1.5 2 2.5 3

σ0 [e2/h]

Perturbation at order n = 1
Resummation of order n = 2
Resummation of order n = 4

Good convergence: supporting the conjecture!
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Conclusion

I STS showed in real space the percolating states for 2DEG at
high magnetic fields

I STS revealed the robust nodal structure of higher Landau
levels

I Local observables can be calculated accurately from
systematic gradient expansion using coherent state Green’s
functions both for given disorder landscape and for
disorder-averages

I The classical percolation transport regime of IQHE was
addressed, with accurate calculation of critical exponents and
comparison to recent experiment

I Phonons seem to provide the main dissipation mechanism for
a wide range of temperatures
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