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Simulating large-α QED in superconducting circuits

Fiat Lux!
Another fine Feynman quote:

”God’s hand wrote α, and we don’t know how He pushed his pencil”

αQED =
e2

4πϵ0ℏc
≃ 1

137
(small number)
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Simulating large-α QED in superconducting circuits

What if αQED were much larger?
▶ Spectroscopists would hate it:

[Eikema, Walz & Hänsch, PRL 2001]

▶ Natural linewidth Γ for 3D atomic decay way smaller than the
transition frequency ∆:

Γ

∆
≃ [αQED]

3 ≃ 10−7
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Simulating large-α QED in superconducting circuits

Large α is interesting for non-linear optics!
Narrow linewidth of an atomic transition in vacuum:

Γ

∆
=

(
P

eλ

)2

αQED

▶ P = transition electric dipole
▶ λ = wavelength of resonant photon

Ultra-strong coupling of QED:

Γ

∆
≃ 1

▶ Huge Lamb shift ∆∗ from bare ∆
[Leggett et al., RMP 1987]

▶ Large linewidth ⇒ strong photon down-conversion
[Goldstein, Devoret, Houzet & Glazman, PRL 2013]
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Simulating large-α QED in superconducting circuits

Large α is interesting for condensed matter!

Atom in a large α environment: maps to various classic models

▶ Spin-boson model ⇔ Kondo model

H =
∆

2
σx +

√
ασz∇ϕ(0) +

∫
dx (∇ϕ(x))2

▶ Boundary sine-Gordon (BSG) model ⇔ tunneling in Luttinger
liquid

H = v cos[
√
αϕ(x = 0)] +

∫
dx (∇ϕ(x))2

Most of the fun happens for α ≃ 1:

▶ Kondo-like physics

▶ Quantum phase transitions

▶ Algebraic correlations (Luttinger liquids)
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Simulating large-α QED in superconducting circuits

High impedance medium is the way to go
Alternative expression: αQED = Z0

2RK

▶ Z0 =
√

µ0/ϵ0 ≃ 376Ω: vacuum impedance

▶ RK = h/e2 ≃ 25812Ω: resistance quantum

Telegraph equation for LC waveguide:

∂V

∂x
= −ℓ

∂I

∂t
,

∂I

∂x
= −cg

∂V

∂t

⇒ I (x , t) = I+e
iω[t−

√
ℓcgx−t] + I−e iω[t+

√
ℓcgx]

⇒ V (x , t) =
√
ℓ/cg [I+(x , t)− I−(x , t)]

Impedance Z =
√

ℓ/cg and velocity v = 1/
√

ℓcg
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Simulating large-α QED in superconducting circuits

Josephson junction as a high inductance element

Josephson relations: Φ is phase difference across a junction

I = Ic sinΦ ≃ IcΦ (linear regime)

V =
ℏ
2e

dΦ/dt

⇒ V =
ℏ

2eIc
dI/dt = LJdI/dt

▶ Putting numbers: LJ ≃ 1 nH/µm ≃ 104Lgeometric

▶ Effective coupling constant: αchain = (2e)2

e2
Zchain
2RK

≃ 1

▶ “Light” with slow velocity: v = 1/
√
ℓcg ≃ c/100
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Simulating large-α QED in superconducting circuits

Josephson arrays

Let’s consider a chain of tunnel-coupled superconducting islands:

Generic Hamiltonian: valid for T ≪ Tc ≃1K

H =
1

2

∑
i ,j

(2e)2ni
(
C−1

)
ij
nj − EJ cos(Φi − Φi+1)

n − Φ are conjugate variables: quantum fluctations are controlled
by the ratio of EC ∼ (2e)2/C and EJ = ℏ2/[(2e)2LJ ]
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Simulating large-α QED in superconducting circuits

Waveguide engineering

Harmonic regime:
▶ For EJ ≫ (2e)2/(2CJ + Cg ), weak phase fluctuations:

Hchain ≃ 1

2

∑
i ,j

(2e)2ni
(
C−1

)
ij
nj+

∑
i

EJ

2
(Φi−Φi+1)

2 =
∑
k

ωka
†
kak

Spectrum:

ωk = 2 sin(k2 )
√

(2e)2EJ

Cg+4CJ sin
2(k/2)

k = πn
N with n = 1 . . .N

N = number of junctions
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Simulating large-α QED in superconducting circuits

Seeing the modes
Finite chain coupled to 50 Ω lines: “giant Fabry-Perot cavity”

Zchain =
√
LJ/Cg ≃ 3kΩ ⇒ αchain = 2Zchain/RK ≃ 0.4

Speed of light: v ≃ c/60
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Simulators of bosonic quantum impurity models

Simulators of bosonic quantum
impurity models

[Léger et al., SciPost 2023]

[Kuzmin et al. PRL 2021]
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Simulators of bosonic quantum impurity models

Adding a boundary condition

Device: chain of 4250 identical large junctions coupled to a SQUID

Boundary sine-Gordon model:

H =
∑
k

ωka
†
kak − EJ(ΦB) cos[ϕ(x = 0)]

with ϕ(x = 0) =
∑

k gk(a
†
k + ak)

▶ Important QFT (Bethe ansatz solution...)

▶ Flux-tunable non-linearity: EJ(ΦB) = EJ | cos(ΦB)|
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Simulators of bosonic quantum impurity models

Transmission of the device

Measurement at zero flux: EJ(ΦB = 0) is large → linear regime

▶ Eigenmodes are clearly resolved as sharp anti-resonances

▶ Very high quality factor

▶ Level spacing decreases at high frequency: UV cutoff ωP
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Simulators of bosonic quantum impurity models

Impact of the boundary on the chain spectrum

Two clear effects by decreasing EJ :

▶ Peaks shifts → Re[Σ(ω)] = dispersive response

▶ Peaks broaden → Im[Σ(ω)] = dissipative response

▶ How do we extract Σ(ω) from the data?
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Simulators of bosonic quantum impurity models

Dispersive response: phase shift spectroscopy

Phase shift: δθk = π ∆ωk
ωk+1−ωk

[DeWitt, Phys. Rev. (1956); Puertas et al., npj Quantum Inf. (2019)]
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Simulators of bosonic quantum impurity models

Phase shift crossover curves
Fit the data from a linearized model:

=⇒ Extract from fit the effective Josephson energy E ∗
J (ΦB)
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Simulators of bosonic quantum impurity models

Renormalized Josephson energy E ∗
J

Red dots = measured E ∗
J

Blue line = bare EJ

Black line = SCHA E ∗
J

SCHA: microscopic self-consistent harmonic approximation
E ∗
J (ΦB) = EJ(ΦB)e

−⟨φ̂2
0⟩/2 [Schön & Zaikin, Phys. Rep. (1990)]

Fit of unknown parameters: EJ(0) = 27GHz
EJ(Φq/2)/EJ(0) = 3% (SQUID asym.)

Note: Ambegaokar-Baratoff gives EJ(0) = 26GHz, OK!
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Simulators of bosonic quantum impurity models

Can we see scaling law of E ∗
J ? (almost)

Expected exponent: E ∗scaling
J ∝ E

1/(1−α)
J

[Panyukov & Zaikin Physica B 1988, Hekking & Glazman PRB 1997]

Dots = E ∗
J measurement

Dashed = Min(EJ ,E
∗scaling
J )

Black line = E ∗
J from SCHA

IR cutoff: thermal effects spoil the scaling regime...
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Dissipation from photon down-conversion

Dissipation from photon
down-conversion

[Léger et al., SciPost 2023]

[Kuzmin et al. PRL 2021]
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Dissipation from photon down-conversion

Dissipative response: quality factor spectroscopy
Analysis of two given resonances at small and large ΦB :

4.52 4.55
0

1

|t|
2

4.15 4.55

f (GHz)

0.95

1

|t|
2

4.52 4.55
0

1

|t|
2

4.15 4.55

f (GHz)

0.95

1

|t|
2

Extract external and internal quality factors Qe and Qi :

▶ Peak total width = γk =
[

1
Qe

+ 1
Qi

]
ωk = γexternalk + γinternalk

▶ Peak depth = 1
1+Qe/Qi

Finite Qi ⇒ photons are lost somewhere inside the circuit
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Dissipation from photon down-conversion

Internal losses for all modes
Peak linewidth due to internal losses: γinternalk = ωk/Qi (ωk)

Low flux regime: ΦB = 0
−EJ(ΦB) cos(φ̂0) ≃ EJ(0)φ̂

2
0/2 → low-loss linear regime

High flux regime: ΦB = π/2
EJ(π/2) ̸= 0 due to SQUID asymmetry ⇒ losses persist!
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Dissipation from photon down-conversion

Diagramatic approach for BSG
Hamiltonian: H =

∫
dk ω(k)a†kak − EJ cos(ϕ0)

ϕ0 =

∫
dk g(k)

(
a†k + ak

)
cos(ϕ0) contains a

†
k1a

†
k2ak3ak4 + . . . ⇒ frequency conversion

Expansion: ΦB close to π/2 =⇒ EJ small

Σ(t) = + + + . . . = EJδ(t)e
−
1

2
GF (0)

→ renormalizes EJ to E ∗
J (equivalent to “SCHA”)

Σ(t) = + + . . . = E 2
J

[
sin(G (t))− G (t)

]
→ provides dissipative response Im[Σ(ω)]
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Dissipation from photon down-conversion

Computed self-energy

Resum bold (skeleton) diagrams:

Σ(t) = + + . . .

Small ωk ≃ v .k ⇒ many near degeneracies in many-body spectrum
⇒ self-consistency provides level repulsion

0

1

2

−
Im

Σ
(G

H
z)

0 2 4 6 8

f (GHz)

0

1

|t|
2

▶ Smooth Im[Σ(ω)] ⇒ true dissipation
▶ Leads to Lorentzian transmission peaks as seen experimentally
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Dissipation from photon down-conversion

Many-body losses: theory vs experiment

Predicted internal linewidth at high flux:

ΦB = 0.5Φq ΦB = 0.49Φq ΦB = 0.48Φq

2 4 6 8 10

f (GHz)

10−1

100

101

∆
f i

(M
H

z)

Φext = π

2 4 6 8 10

f (GHz)

10−1

100

101

Φext = 0.98π

2 4 6 8 10

f (GHz)

10−1

100

101

102

Φext = 0.96π

▶ Fit for ΦB = 0.5Φq and 0.49Φq:
⇒ EJ(0) = 25GHz and SQUID asym. 2.5%
Agreement with theory at small flux

▶ Losses at ΦB = 0.48Φq well described (no fitting)

▶ Losses are a smooth function: many-body dissipation
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Dissipation from photon down-conversion

Can one see scaling laws of losses? (no)

Known result: Σ(ω) ≃ ω2α−1 (Luttinger liquid analogy)

▶ Diagrammatics does reproduce the scaling laws

▶ Scaling is only found if E ∗
J ≪≪ UV cutoff

Limitation of Josephson platforms w.r.t. electronic circuits
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Dissipation from photon down-conversion

Non perturbative regime of the experiment

Losses at intermediate flux: ΦB = 0.42Φq

Compares experiment to
O(E 2

J ) and O(E 3
J ) diagrams

▶ Losses have a peak at ω = ω∗
J

▶ Diagrammatic theory underestimates the magnitude of losses
⇒ requires a truly non perturbative approach

: Quantum simulation of the BSG model in superconducting circuits 24



Direct detection of frequency down-converted photons

Direct detection of frequency
down-converted photons

[Fraudet et al., to appear]
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Direct detection of frequency down-converted photons

Zooming on the many-body structure in ImΣ(ω)

0
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f (GHz)

0

0.15

−
Im

Σ
(G

H
z)

Mode = 10
Ztl = 10Ω
T = 0K
Emission

Mode = 10
Ztl = 10Ω
T = 20mK
Emission+
Absorption

At T = 0K: 3-photons (or more) resonances at ω = ωk1 + ωk2 + ωk3

[Goldstein et al. PRL 2013; Gheeraert et al. PRA 2018; Houzet and Glazman PRL

2020; Burshtein et al., PRL 2021; Kuzmin et al. PRL 2021]

At finite T : also absorption resonances at ω = ωk1 ± ωk2 ± ωk3

[Léger et al. SciPost 2023]
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Direct detection of frequency down-converted photons

BSG: the few-body version
New sample: only 200 junctions
▶ circuit designed for down-converting mode 3 only into mode 1
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Direct detection of frequency down-converted photons

Losses: the few-body version

Resonance condition:

▶ the losses show a peak for the flux ΦB where ω3 ≃ 3ω1

▶ this is no accident: the same behavior is seen by changing the
resonance condition (flux in the chain)
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Direct detection of frequency down-converted photons

Direct evidence for spontaneous down-conversion

▶ Pump: driven at ωd ≃ 9GHz and low power

▶ Probe: measured at frequency ωd ≃ 3GHz
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Direct detection of frequency down-converted photons

Summary
▶ Superconducting circuits are a nice platform to simulate

many-body systems

▶ We analyzed the renormalization of the Boundary Sine-Gordon
(BSG) model

▶ The dissipative response of BSG is controlled by “particle
production” processes

▶ A fully microscopic diagrammatic theory was developed to
model dissipative losses

▶ The direct detection of down-converted photons was achieved
using a few-body version of BSG

Outlook: correlations between non-linearly converted photons?
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Extra slides

Extra slides
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Extra slides

A circuit view of the full device

▶ Boundary = terminal junction (SQUID) with tunable EJ(ΦB)

▶ Chain of microwave resonators = resonant cavity

▶ AC measurement: Ioute
iωoutt vs Iine

iωint (in GHz range)

[Léger et al., Nat. Comm. (2019); Kuzmin et al., PRL (2021)]
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Extra slides

Properties of the array

Dispersion relation: ωk =

√
4

LCg

sin2(k/2)

1+4(C/Cg ) sin2(k/2)

Fitted chain parameters: L = 0.52nH, Cg = 0.15fF, C =144fF

Chain impedance: Zchain =
√
L/Cg = 1.9kΩ ⇒ α = 0.3

Plasma frequency: ωP = 18 GHz (UV cutoff)
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Extra slides

Boundary junction frequency?

Isolated junction:

ωJ =
1√
LJCJ

=
√
2EcEJ(ΦB)

Boundary junction + chain:

EJ(ΦB) changes the boundary condition
⇒ affects all eigenmodes via a phase shift
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Extra slides

Dispersive response: phase shift spectroscopy
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Extra slides

Circuitry in the non-linear case

Dyson equation :
[
ω2Ĉ − 1/L̂+

i2ω

Ztl
δ̂(N) − Σ(ω)δ̂(0)

]
Ĝ = 1

Ztl = 50Ω: external broadening from transmission line

Transmission from Kubo: t(ω) = 2iωGN,N(ω)/Ztl
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Extra slides

Predicted dissipative response and transmission

Full microscopic model:

0

1.5

3

−
Im

Σ
(G

H
z)

0 2 4 6 8

f (GHz)

0

1

|t|
2

▶ OK: qualitatively similar to the experimental internal width γk

▶ Not OK: incorrect multiplet structure (not seen experimentally)
This is due to sharp resonances in the self-energy
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Extra slides

Dielectric losses in the chain

▶ Dielectric losses dominate at low flux

▶ Phenomenological fit [Nguyen et al. PRX 2019] is subtracted to
obtain the intrinsic internal losses

: Quantum simulation of the BSG model in superconducting circuits 36



Extra slides

Connection to other physical systems
Josephson boundaries bear strong similarities to the Kondo effect:

[Leggett, RMP (1987); Le Hur, PRB (2012); Snyman&Florens, PRB (2015);...]

Quantum computing:

Requires full control to prepare
complex quantum states
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Extra slides

Connection with fermionic quantum impurities

Setup: quantum dot (spin) connected to metallic leads

Kondo model:

H =
∑
kσ

ϵkc
†
kσckσ + J S⃗ .s⃗(x = 0)

▶ Important brick for strongly correlated fermions
▶ Renormalized scale TK ≃ De−D/J ≪ J analogous to ∆∗

▶ Tunable exchange coupling J via gates
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Extra slides

Connection with quantum circuits

Classical energy: harmonic LC oscillator

H =
Q2

2C
+

L

2
I 2 =

Q2

2C
+

L

2
(Q̇)2

Conjugate classical variables: charge/flux

∂H

∂Q̇
= LQ̇ = LI = ϕ

Quantizing the LC circuit: [Q̂, ϕ̂] = iℏ What does it mean?

▶ Tiny electromagnetic signals generated by charge fluctuations
of order δQ ≃ 2e and flux fluctuations of order δϕ ≃ h/2e

▶ Vacuum reached when kBT ≪ ℏ/
√
LC and low loss

: Quantum simulation of the BSG model in superconducting circuits 39



Extra slides

Connection with quantum circuits

Classical energy: harmonic LC oscillator

H =
Q2

2C
+

L

2
I 2 =

Q2

2C
+

L

2
(Q̇)2

Conjugate classical variables: charge/flux

∂H

∂Q̇
= LQ̇ = LI = ϕ
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