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We propose an alternative formulation of many-body perturbation theory that uses the density-
functional concept. Instead of the usual four-point integral equation for the polarizability, we obtain a
two-point one, which leads to excellent optical absorption and energy-loss spectra. The corresponding
three-point vertex function and self-energy are then simply calculated via an integration, for any level of
approximation. Moreover, we show the direct impact of this formulation on the time-dependent density-
functional theory. Numerical results for the band gap of bulk silicon and solid argon illustrate corrections
beyond the GW approximation for the self-energy.
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The electronic structure of materials and its response to
an external perturbation are key quantities for the interpre-
tation of many experimental results or for the design of
technological devices. In this context, ab initio electronic
structure calculations have become a tool of choice. One
can already obtain useful information about the band
structure because of the widely used Kohn-Sham (KS)
framework of the density-functional theory (DFT) [1];
for the response function, one can use an independent
particle Fermi’s golden rule [which is equivalent to the
random phase approximation (RPA)]. Beyond this, state-
of-the-art calculations for solids are based on the many-
body perturbation theory. In that case, quasiparticle (QP)
band structure energies are obtained from the solution of an
equation similar to the KS one, but with the KS exchange-
correlation (xc) potential vxc replaced by the electron self-
energy �, most often using Hedin’s GW approximation
[2]. In this approximation, � is the product of the one-
particle Green’s function G and the screened Coulomb
interaction W calculated in the RPA. The resulting band
structures, and, in particular, the band gap, are generally
much closer to the measured ones than the KS results [3].
In order to get improved response functions, the electron-
hole interaction can then be included by adding the so-
called ‘‘vertex corrections’’ beyond the RPA, which is done
in practice by solving the four-point Bethe-Salpeter equa-
tion (BSE) for the polarizability P; this leads in general to
excellent absorption and electron energy-loss spectra [4].
In particular, one correctly describes the important exci-
tonic effects. When needed [5], one could then use the
vertex and the improved response function to construct a
new self-energy beyond the RPA GW approximation.

Unfortunately, calculations of vertex corrections are
cumbersome essentially because of the four-point
(electron-hole scattering) nature of the BSE (see, e.g., [4]
for the BSE, or [6,7] for the self-energy beyond GW).
Calculations of the response function have been limited
to relatively simple systems. Cancellation effects on qua-
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siparticle energies between the vertices in P and � have
been discussed only for selected cases, especially for the
homogeneous electron gas [8], or for bulk silicon but using
a vertex derived from a local approximation to the self-
energy, namely, the KS potential in the local density ap-
proximation (LDA) [9]. It is therefore an important chal-
lenge to find an efficient way to evaluate the effects of
vertices arising from more realistic KS potentials or, better,
from nonlocal self-energies.

Alternatively, it is known that in principle one could
obtain the polarizability directly from a two-point equa-
tion: this is the case when one works in the framework of
time-dependent DFT (TDDFT) [10], since one propagates
the density instead of the Green’s function. TDDFT could
therefore clearly be a prominent alternative to the BSE for
the calculation of P. Recently, a reliable (long-range)
approximation for the two-point xc kernel fxc�r; r0; t; t0�
of the TDDFT linear response equation for P has been
derived from the BSE; this combines the precision of the
latter with the computational advantages of TDDFT [11].
TDDFT is, of course, not designed to access one-QP
properties, like the band structure; yet, one may try to
use the progress made concerning P in order to find ap-
proximations for � beyond the GW approximation, and a
first attempt in this sense has already been made concern-
ing QP lifetimes [6].

The ultimate goal would be, of course, to combine the
density functional and the QP concepts in such a way that
systematic and efficient improvements to the spectroscopic
quantities of interest could be obtained. In this Letter, we
show how this goal can be reached.

We start from the Dyson equation

G�1�12� � G�1
0 �12� � V�1�	�12� ���12�; (1)

where �12� stands for two space, time, and spin coordinates
�r1t1
1; r2t2
2�, G0 is the free-particle Green’s function,
and V�1� � U�1� � VH�1�, the total classical potential,
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where U is a time-dependent external potential that goes to
the static physical potential at times �1 and whose ficti-
tious time-dependent part is made vanishing at the end of
the derivation, and VH is the Hartree potential. One can
express the self-energy in terms of variations of the Green’s
function with respect to the external potential, � �
�ivG	G�1=	U [2], or

��12� � iG�14�	�42; 5�
	V�5�
	U�3�

v�31��; (2)

with the irreducible vertex function

	�12; 3� � �
	G�1�12�

	V�3�
� 	�13�	�23� �

	��12�
	V�3�

(3)

and v the bare Coulomb interaction (integration over in-
dices not present on the left is implicit throughout this
Letter). Disregarding � on the right-hand side of Eq. (3)
yields the GW approximation.

The derivative 	�=	V is usually replaced by the chain
rule �	�=	G��	G=	V�, which, using the relation between
the derivatives of G and of G�1, leads to the term
�	�=	G�GG	 that transforms Eq. (3) into an integral
equation for 	 [2]. This equation, or an equivalent form,
with its four-point kernel dominated by 	��12�=	G�34�,
has to be solved in order to get the irreducible polarizabil-
ity P � �iGG	 and an improved self-energy from Eq. (2).
This is the main obstacle on the way to a calculation of
polarizabilities or self-energies beyond the RPA.

The fundamental idea of the present Letter is to benefit
from the Runge-Gross theorem of TDDFT [10] in order to
rewrite 	�=	V in Eq. (3). The one-to-one relation between
time-dependent densities and external potentials, or con-
sequently between the densities and the classical potentials
V, allows one to use an alternative chain rule to express
	�=	V, namely, �	�=	���	�=	V� [12]. This transforma-
tion is hence exact whenever the linear response version of
TDDFT, which is the only ingredient needed here, is exact
[13]. It leaves observables like QP energies of the original
equations accessible and suggests straightforward approx-
imations. Equation (3) hence becomes

	�12; 3� � 	�13�	�23� �
	��12�
	��4�

P�43�; (4)

where P � 	�=	V is the irreducible polarizability that, as
explained above, is usually calculated by solving the vertex
equation. However, by integrating Eq. (4) with two Green’s
functions G, one directly obtains

P�12� � P0�12� � P0�13�feffxc �34�P�42�; (5)

with P0�12� � �iG�12�G�21� and the two-point kernel

feffxc �34� � �iP�1
0 �36�G�65�G�506�

	��550�
	��4�

: (6)

In other words, one can now first determine the two-point
irreducible polarizability P from the integral Eq. (5), and
subsequently the three-point vertex 	 via the integration of
18640
Eq. (4). From P, the reducible polarizability Pred [15] is
obtained via Pred � P� PvPred.

Finally, the self-energy becomes

��12� � iG�12�WTC-TC�21� � iG�14�

	
	��42�
	��5�

Pred�53�v�31��: (7)

The first term has the GW form, but with the test charge–
test charge (TC-TC) screened Coulomb interaction
WTC-TC � �1� vPred�v, instead of the RPA one. It has
been discussed [8,9] that � � iGWTC-TC would yield un-
reliable results, because of the cancellation effects coming
from the second term. In fact, the term vPredv contributing
to WTC-TC creates the induced Hartree potential felt by a
classical charge. The additional term �	�=	��Pred is re-
sponsible for the missing induced xc potentials that act on
an electron or hole. It is therefore useful to reformulate
Eq. (4) as

	�12; 3� � 	�13�	�23� � 	�12�feffxc �14�P�43�

� �	�12; 3�; (8)

where

�	�12; 3� �
�
	��12�
	��4�

� 	�12�feffxc �14�
�
P�43�: (9)

The most important effects are, in fact, contained in the
first two (one- and two-point) contributions to 	 (called
	�2� in the following), whereas the three-point remainder
�	 can be interpreted as a subsequent ‘‘nonlocality’’ cor-
rection. �	 has no effect on P, as one can see by integrat-
ing Eq. (9) with two Green’s functions and using Eq. (6). In
the self-energy of Eq. (7), the inclusion of 	�2� leads to � �
iG ~W with a modified screened Coulomb interaction ~W �

1� �v� feffxc �P

red�v. This is a test charge–test electron
(TC-TE) screened Coulomb interaction instead of WTC-TC;
this expresses the fact that an additional electron or hole in
the system cannot be described as a classical charge. �	
yields then in � a correction term to this physically in-
tuitive contribution; it is entirely due to the nonlocality of
the self-energy in Eq. (9).

Equation (5) is a two-point, but QP-derived, equation for
the polarizability. The link with TDDFT can be made by
the fact that the diagonal of G yields the exact time-
dependent density �iG�11�� � ��1� [16]. 	G=	� �
�G�	G�1=	��G leads to

iG�13�G�41��
	G�1�34�

	��2�
� 	�12�: (10)

Since the same exact density, and hence the same
Hartree potential, should also be obtained from the
Kohn-Sham potential vKS � V � vxc, we can write

G�1�12� � G�1
0 �12� � 	�12�
vKS�1� � vxc�1�� ���12�:

(11)
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As 	G�1
0 =	� � 0, Eq. (10) becomes

P0�13���1
0 �32� � iG�13�G�41��

	��34�
	��2�

� P0�13�fxc�32� � 	�12�; (12)

where �0�12� � 	��1�=	vKS�2� is the KS independent
particle polarizability and fxc�12� � 	vxc�1�=	��2� is
the xc kernel of TDDFT. This kernel turns out to consist
of two terms, namely, f�1�xc and f�2�xc , with f�2�xc exactly equal
to the feffxc arising from our previous approach and

f�1�xc �12� � ��1
0 �12� � P�1

0 �12�: (13)

f�1�xc serves to change the KS response function into the
independent QP one, in particular, to solve the so-called
band gap problem. f�2�xc accounts for the electron-hole
interaction. This splitting [17] is physically intuitive.
Altogether, TDDFT yields then for the irreducible polar-
izability P

P � �0 � �0��
�1
0 � P�1

0 � feffxc �P: (14)

This is equivalent to Eq. (5).
To get an explicit expression for feffxc , we choose a

starting approximation for the self-energy, and consistent
approximations for the functional derivative of � and for
G, on the right-hand side of Eqs. (6) and (7). A simple
choice could be to take �, G, and P0 as derived from a
local and adiabatic xc potential, e.g., the LDA one. This
leads, of course, to the TDLDA and the GW	 approach of
Ref. [9]. A better choice is to start from the GW approxi-
mation for �, taking W as a screened (e.g., static RPA)
Coulomb interaction. For the functional derivative, it is
then reasonable (i) to neglect the derivative of W as is
usually done in the BSE: (ii) to approximate 	G=	� �
�G�	G�1=	��G by GP�1

0 G, truncating the chain of de-
rivatives 	�=	� that would appear if one continued to
calculate all terms of 	G�1=	� and that would lead to an
integral equation similar to Fig. 2(b) of Ref. [17]. (Note
that this is equivalent to supposing G is created by a local
potential.) We obtain hence from Eq. (6)

feffxc �34� � P�1
0 �36�G�65�G�506�W�550�

	G�57�G�750�P�1
0 �74�: (15)

Equation (15) is the electron-hole xc kernel of
Refs. [11,17]. In those works, feffxc was derived in two
TABLE I. Direct gap (in eV) at 	 in bulk silicon and solid
argon, calculated using a local approximation (LDA) for the
starting self-energy (see text).

LDA GWRPA GWTC-TC G ~W Expt.

Si 2.53 3.17 3.08 3.18 3.40
Ar 8.18 12.95 12.64 12.75 14.2
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completely different ways (by mapping matrix elements
of the BSE electron-hole interaction on those of TDDFT
and by a first-order expansion in W, respectively) and
extensively tested for the dielectric function, with excellent
results. In other words, the results of Refs. [11,17] yield the
numerical validation of the present derivation, whereas, in
turn, the latter a posteriori yields new physical insight
about why the former had led to such (unexpectedly)
good results: the physics of the variation of the self-energy
upon excitation, which gives rise to the electron-hole in-
teraction, can be captured in terms of density variations
only. This is very important, since it encourages the use of
the present scheme also for cases where one wishes to go
beyond the above approximations.

It is interesting to see what one obtains when using this
scheme to go beyond the GW approximation for the cal-
culation of band gaps in semiconductors and insulators.
Since systematic GW	 studies in literature are available
only for a short-range (LDA) kernel [9], we provide here a
discussion on the influence of a long-range contribution on
QP energies.

For illustration, we present in Tables I and II results on
bulk silicon and solid argon (obviously, the effect of a long-
range contribution is particularly interesting in a solid, and
silicon and argon represent two extreme cases, the first one
with strong screening and continuum excitons, the second
one with almost no screening and strongly bound electron-
hole pairs).

The first series of results, presented in Table I, uses LDA
as the starting approximation for the right-hand side of
Eq. (7), whereas the second series in Table II uses the static
but nonlocal ‘‘Coulomb-hole-plus-screened exchange’’
(COHSEX) approximation to GW [2]. In the latter case,
we use the kernel feffxc given by Eq. (15), which, although
approximate, has the correct long-range behavior [11,18].
Furthermore, LDA wave functions are used throughout: we
suppose them to be similar to the COHSEX QP ones [19].

The two tables show the band gap at 	 for both materials
under study. The first column gives the band gap that is
obtained from the respective starting approximation (i.e.,
LDA or COHSEX). The second column uses this band
structure, and provides the subsequent standard non-self-
consistent GWRPA. Columns 3 and 4 show the band gap for
the approximations to the self-energy derived in this work,
using either WTC-TC [first part of Eq. (7)] or ~W (neglect of
only �	). Finally, the experimental value is given in the
last column [21]. Both materials show similar tendencies.
In particular, there is a significant influence of the single-
TABLE II. Same as Table I, but based on a nonlocal approxi-
mation (COHSEX) for the starting self-energy.

COHSEX GWRPA GWTC-TC G ~W Expt.

Si 3.64 3.30 3.18 3.32 3.40
Ar 14.85 14.00 14.16 14.76 14.2

2-3



PRL 94, 186402 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
13 MAY 2005
particle energies on the GWRPA (second columns). The
choice of COHSEX energies in W simulates the effect of
the contribution f�1�xc of Eq. (13). In most cases, the
electron-hole vertex correction feffxc � f�2�xc in WTC-TC

closes the gap (third columns) with respect to RPA.
When feffxc is included according to Eq. (13) in order to
evaluate the explicit vertex in � � iGWTC-TC	�2� � iG ~W
(fourth columns), there is a strong opening of the gap. Our
most complete result is hence determined by a series of
cancellations. The overall behaviors of both kernels under
study (arising from LDA or the nonlocal COHSEX
scheme) are very similar, even though the LDA kernel
does not have the crucial, correct long-range contribution
[18]. These results roughly justify calculations using the
RPA GW form constructed with QP energies instead of KS
ones. The GW	 gap turns out to be slightly bigger than the
experimental value. In order to obtain improved agree-
ment, one should, of course, avoid some of the above
approximations; in particular, we expect the nonlocality
correction to decrease the gap, since the neglected term
should reduce the effect of the external vertex. Those and
other more sophisticated numerical calculations (includ-
ing, e.g., self-consistency in the wave functions) are, how-
ever, beyond the scope of this illustration.

In conclusion, using the concept of the density as a
crucial quantity, we have derived a complete new set of
equations for the many-body vertex, polarizability, and
self-energy. This approach does not require the solution
of integral equations containing a four-point kernel. In
particular, the polarizability is directly obtained from a
two-point equation, containing a two-point many-body
kernel feffxc , which completely changes the way, e.g., exci-
tonic effects can be calculated. We have shown that the
same expression for the polarizability can also be derived
from the relation between the Green’s function and the
charge density. Moreover, the latter derivation yields the
exchange-correlation kernel of TDDFT, which turns out to
differ from feffxc by a term that is essentially responsible for
the gap correction. Our approach explains the success of
previously published approximations for the kernel and
allows one to go beyond in a systematic way. On the other
hand, it opens the way for better approximations to the self-
energy and other many-body quantities. For the gap cor-
rections in bulk silicon and solid argon, we have put into
evidence cancellation effects of different contributions to
the vertex corrections beyond the GW approximation.
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