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Abstract

Many-body perturbation theory (MBPT) offers a convenient framework for the calcula-

tion of electronic excitations. In principle, all kinds of electronic excitations (i.e., neutral or

involving a change in particle number) are accessible, and the physics that has to be included

is relatively well understood. Also time-dependent density-functional theory (TDDFT) al-

lows one in principle to describe excitations, at a a priori lower computational cost. However,

in that case it is more difficult to design good approximations for the exchange-correlation

contribution, since one does not work in the physically intuitive quasi-particle picture. More-

over, only neutral excitations are accessible. In order to combine the advantages of both

approaches, we propose an alternative formulation of many-body perturbation theory that

uses the density-functional concept. Variations of many-body quantities upon excitation are

expressed through variations with respect to the density. In this way, instead of the usual

four-point integral equation for the polarizability (namely, the Bethe-Salpeter equation), we

obtain a two-point one (i.e., like in TDDFT), that leads to excellent optical absorption and

energy loss spectra. The corresponding three-point vertex function and self-energy are then

simply calculated via an integration, for any level of approximation. Moreover, we show the

direct impact of this formulation on the time-dependent density-functional theory. With the

help of numerical results, we discuss the consequences of exchange-correlation contributions

to the response for optical spectra and for the band gap of bulk silicon and solid argon.
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1 Introduction

The electronic structure of materials and its response to an external perturbation are key quanti-

ties for the interpretation of many experimental results or for the design of technological devices.

Electronic excitations enter a wealth of scientific questions or daily-life problems, ranging e.g.

from the deformation of molecules upon absorption of radiation in cancer research, to defect

creation in nuclear waste, to photosynthesis or to the design of more efficient solar cells. It

is therefore highly desirable to be able to describe, understand, and even predict electronic

excitations and their consequences.

In this context, ab initio electronic structure calculations have become a tool of choice. In the

community of solid-state physicists the widely used Kohn-Sham (KS) framework of the density-

functional theory (DFT) [1] is a convenient starting point. Although DFT is in principle a

ground state theory and KS eigenvalues are not meant to represent measurable electron addi-

tion and removal energies, the KS band structure already yields much useful information, and

occupied bands are often in quite reasonable agreement with, e.g., photoemission results. In

order to describe the response to an external perturbation, such as it is measured for example

in optical absorption experiments, one can then construct a response function using an inde-

pendent particle Fermi’s golden rule, eventually including the self-consistent variations of the

Hartree potential (which is equivalent to the Random Phase Approximation (RPA) including

crystal local-field effects).

Beyond this, one should try to improve the description of exchange-correlation effects, both in the

band structure and in the self-consistent variation of the corresponding potential. State-of-the-

art calculations for solids are based on the many-body perturbation theory (MBPT). Concerning

the band structure, in that case, quasi-particle (QP) energies are obtained from the solution of

an equation similar to the Kohn-Sham one, but with the KS exchange-correlation (xc) potential

vxc replaced by the electron self-energy Σ. The last quantity is most often calculated in Hedin’s

GW approximation [2], where Σ is equal to the product of the one-particle Green’s function G

and the screened Coulomb interaction W calculated in the RPA. The resulting band structures,

and in particular the band gap, are generally much closer to the measured ones than the KS

results [3]. In order to include the self-consistent variation of Σ (which is the corresponding

xc “potential”) upon excitation, and hence to get improved response functions, one can then

add the so-called “vertex corrections” beyond the RPA. This is done in practice by solving the

four-point Bethe-Salpeter equation (BSE) for the polarizability P ; the kernel of this integral

equation expresses the electron-hole interaction (whereas electron and hole are non-interacting

when the RPA is adopted and local-field effects are neglected). The BSE leads in general to

excellent absorption and electron energy-loss spectra [4]. In particular, one correctly describes

the important excitonic effects.

Unfortunately, calculations of vertex corrections are cumbersome essentially because of the four-

point (electron-hole scattering) nature of the BSE (see e.g. [4]). Calculations of the response

functions in this framework have therefore been limited to relatively simple systems. Moreover,

attempts to go beyond the GW approximation through vertex corrections (see e.g. [6, 7, 8, 9])

are rare and restricted to relatively simple systems, even though it is well known that the

precision of the standard GW approximation is limited, and that the approximation often fails
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for moderately to strongly correlated materials (see e.g. [10]). Again, this lack of examples is

essentially due to the above-mentioned computational difficulties.

However, at least concerning response functions, it is known that in principle one could obtain

the polarizability directly from a two-point equation: this is the case when one works in the

framework of time-dependent DFT (TDDFT) [11], since one propagates the density (a function

that is local in time and space) instead of the one-particle Green’s function (which is non-local

both in time and in space). TDDFT could therefore clearly be a prominent computational alter-

native to the BSE for the calculation of P . The drawback resides in the fact that up to recently,

and contrary to the MBPT framework, reliable approximations for the xc potential vxc(r, t)

and its first density-variation, the xc kernel fxc(r, r
′, t, t′), were missing in particular concerning

absorption spectra of solids. Several attempts were therefore made to derive the unknown, but

two-point, xc kernel of the TDDFT linear response equation for P from the known, but four-

point, BSE, in order to combine the precision of the latter with the computational advantages

of TDDFT [12, 13, 14]. Various different approaches have lead to quite similar expressions that,

tested for real materials, have turned out to be extremely successful in reproducing the under-

lying BSE via a TDDFT-like equation. While recalling below some of these recent results, we

will however focus on some more general questions that, we believe, are answered by the present

work. These are (i) a physical explanation for the unexpected success of these approaches, (ii)

a prescription of how one can use this MBPT-TDDFT combination in order to get response

functions beyond the approximations that are currently made for the BSE, and (iii) the use of

the TDDFT concept within MBPT (instead of the use of MBPT quantities within TDDFT).

In fact, since TDDFT is not designed to access one-QP properties, like the band structure, this

enlarges significantly the range of problems that can be addressed by such a combination.

The ultimate goal of this line of research can be summarized as the hope to combine the density-

functional and the QP concepts in such a way that systematic and efficient improvements to the

spectroscopic quantities of interest could be obtained. We believe that this work shows how this

goal can be reached [15].

2 Many-body perturbation theory and time-dependent density-

functional theory: two approaches, in part to the same prob-

lem

2.1 Hedin’s equations

In the field of electronic excitations, it is convenient to work with Green’s functions. The time-

ordered one-particle Green’s function is defined

G(1, 2) = −i〈Φ0|T
[

ψ̂(1)ψ̂†(2)
]

|Φ0〉, (1)

where |Φ0〉 is the many-body N-particle ground state, ψ̂(1) (ψ̂†(1)) is the annihilation (creation)

operator of an electron, T is the time-ordering operator and 1 stands for the set of the real

space and time coordinates plus the spin degree of freedom, 1 = r1, t1, σ1. The Green’s function

G has poles that correspond to electron addition and removal energies. Since the many-body
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ground state |Φ0〉 is another unknown of the problem, the calculation of this quantity is not

straightforward. One has to search either for a diagrammatic expansion or for a set of equations

governing G that eventually may be somehow approximated. Here we adopt the second line,

developped in its present form by Lars Hedin [2]. For the sake of comprehension of all our

subsequent developments, we estimate useful to summarize it in the following.

The main idea is that one starts by writing the equation of motion for the one-particle Green’s

function G via its time derivative. It is not astonishing to find that this gives rise to an expression

involving a two-particle Green’s function G(2): the particle propagating in the system polarizes

the system. This polarization corresponds to the creation of electron-hole pairs, hence two

particles. The problem of calculating the one-particle Green’s functions is then translated into

the problem of calculating the two-particle Green’s function which, in its turn, would imply an

higher order Green’s function, and so on. In order to obtain a closed description, one introduces

a potential-like operator that is however nonlocal in time and space, namely the self-energy Σ.

By definition, G and Σ are linked through the Dyson equation

G−1(1, 2) = G−1
0 (1, 2) − V (1)δ(1, 2) − Σ(1, 2) (2)

where G0 is the free-particle Green’s function, and V (1) = U(1) + VH(1), the total classical

potential, (U is an external potential and VH is the Hartree potential). Now, one wishes to

introduce the above-mentioned two-particle Green’s function G(2) via some known quantity.

Since G(2) is responsible for the response to a perturbation, one can in fact also create it by

applying an external potential. To this purpose in Hedin’s approach a small time-dependent

contribution is added to the external potential. The resulting U is constructed such that it goes

to the static physical potential Vext(r) at times ±∞; its fictious time-dependent part will be

made vanishing at the end of the derivation. One can then express the self-energy in terms of

variations of the Green’s function with respect to the external potential, Σ = −ivGδG−1/δU

[2], or

Σ(1, 2) = iG(1, 4)Γ(4, 2; 5)
δV (5)

δU(3)
v(3, 1+), (3)

with the irreducible vertex function

Γ(1, 2; 3)=−
δG−1(1, 2)

δV (3)
= δ(1, 3)δ(2, 3)+

δΣ(1, 2)

δV (3)
(4)

and v the bare Coulomb interaction (integration over indices not present on the left is implicit

throughout the equations).

The derivative δΣ/δV is then usually replaced by the chain rule (δΣ/δG)(δG/δV ). Using the

relation (δG/δV ) = −G(δG−1/δV )G, Eq. (4) is transformed into and integral equation

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫

d4567
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ(6, 7; 3). (5)

In the same way one obtains the remaining Hedin’s equations

Σ(1, 2) = i

∫

d34G(1, 3)Γ(3, 2; 4)W (4, 1) (6)

W (1, 2) = v(1, 2) +

∫

d34 v(1, 3)P (3, 4)W (4, 2) (7)
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P (1, 2) = −i

∫

d34G(1, 3)G(4, 1)Γ(3, 4; 2) (8)

in terms of the time-ordered polarization operator P (1, 2), and the dynamical screened interac-

tion W (1, 2) = δV (1)/δU(3)v(3, 2).

Disregarding Σ on the right-hand side of Eq. (4) would yield the GW approximation,

Γ(1, 2; 3) = δ(1, 2)δ(1, 3) =⇒ Σ(1, 2) = iG(1, 2)W (2, 1) (9)

Equation (5), or an equivalent form, with its four-point kernel dominated by δΣ(1, 2)/δG(3, 4),

has to be solved in order to get the irreducible polarizability P = −iGGΓ 3 and an improved

self-energy from Eq. (6). Equation (5) is the main obstacle on the way to a calculation of

polarizabilities or self-energies beyond the RPA.

2.2 Response functions in Time-dependent density-functional theory

As pointed out above, in principle also TDDFT allows one to calculate the excitation energies

and transition probabilities of a many-body system, for constant particle number. In the time-

dependent approach, one studies how the system behaves when subject to a time-dependent

external perturbation that gives rise to density variations. In this case, the system’s response

is directly related to the N -particle excited states of an N -particle system, in a similar manner

that the one-particle Green’s function is related to the (N + 1)- and (N − 1)-particle excited

states of the same system.

In TDDFT, the linear density response of an interacting many-electron system [16]

χ(r, t, r′, t′) =
δρ(r, t)

δU(r′, t′)
(10)

is obtained from the non-interacting Kohn-Sham response to a change in the total Kohn-Sham

potential vKS

χ0(r, t, r
′, t′) =

δρ(r, t)

δvKS(r′, t′)
. (11)

via

χ(r, r′;ω) = χ0(r, r
′;ω) +

∫

dr1dr2 χ0(r, r1;ω)K(r1, r2, ω)χ(r2, r
′;ω) , (12)

where the kernel K has been introduced as

K(r1, r2, ω) =
1

|r1 − r2|
+ fxc(r1, r2, ω) . (13)

with the exchange-correlation contribution

fxc(r, t, r
′, t′) =

δvxc[ρ](r, t)

δρ(r′, t′)
. (14)

3The irreducible polarizability P defined in this work is a time-ordered quantity. From the time-ordered P

one can then obtain a physical (causal) response function with the usual conversion rules. It should be noted

that in the following we do not make a distinction between time-ordered and causal quantities. However, one has

to be careful because this apparent “subtlety” could cause severe errors in practice when not properly accounted

for. One possible way is represented by the Keldysh formalism. In this scheme all the quantities are consistently

defined on the Keldysh contour and pseudo-time-ordered. At the end, projecting from the pseudo-time to the

physical time, causal physical response functions are restored.
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The exact time–dependent exchange-correlation kernel is of course unknown, and practical cal-

culations must rely on some approximation. The most commonly used, due to its simplicity but

also its success mostly in finite systems, is the adiabatic local-density approximation also called

time-dependent LDA (TDLDA), where fxc(r1, r2, ω) is approximated with the (ω-independent)

functional derivative of the LDA exchange-correlation potential:

fTDLDA
xc (r1, r2, ω) = δ(r1 − r2)

dvLDA
xc (ρ(r1))

dρ(r1)
. (15)

Apart from this approximation for fxc, another approximation has to be done in practical

calculations: the static Kohn–Sham orbitals and eigenvalues used to construct χ0 are in fact

calculated with an approximate exchange-correlation potential vxc, typically the same as the

one used in ground state calculations.

If all quantities were evaluated exactly, the retarded version of the time-ordered P calculated

via Eq. (8) should yield the retarded response function χ (Eq. (12) via χ = P +Pvχ. However,

whereas it has turned out that the commonly used GW approximation for Σ together with

its variation (δΣ/δG) are successful in describing response functions (via the today standard

Bethe-Salpeter equation), TDLDA often does not properly account for excitations. In particular

absorption spectra in solids are badly described, even though LDA usually yields satisfactory

ground state properties. Moreover, important quantities such as the measurable bandstructure

are not accessible through TDDFT (at least not considering closed systems). For all these

reasons, the idea consisting in keeping the substantial accuracy of MBPT while at the same time

introducing the density degree of freedom concept, could lead to a more convenient framework

where the computational advantages of density-functional play a fundamental role. Further on

this route, indications on how to improve upon the well established many-body approximations,

could constitute an important subproduct of this derivation.

3 MBPT and TDDFT: a successful combination

3.1 MBPT quantities in TDDFT: a summary of some previous works

During the last years, the scientific community has made a major effort trying to find reliable

approximations for the exchange-correlation kernel of TDDFT. One important line of research

has been the attempt to use MBPT as a starting point. This is in a sense, the opposite direction

of the present work (where we aim at using TDDFT to improve within MBPT), but the two are

of course tightly linked. We will therefore very briefly summarize some of the MBPT-TDDFT

work that is of direct importance for the present approach.

Already in the eighties Streitenberger has suggested [5] to exploit the very fact that both TDDFT

and MBPT should yield, at least in principle, the same (exact) polarizability, in order to define

an effective xc-kernel for the homogeneous electron gas. Later on, the inclusion of approximate

vertex functions in the self energy has been addressed by Mahan and Sernelius [6] for the

homogeneous electron gas and, in the mid nineties, by Del Sole, Reining and Godby for silicon

[7].

More recent work has focused on the extraction of an effective TDDFT xc-kernel by comparison
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with the macroscopic dielectric function resulting from BSE calculations [17]. This yields some

information on the analytic structure of the xc correlation kernel in extended systems, for in-

stance about its long range behavior in real space, but does not avoid the cumbersome solution

of the BSE. Very recently, approaches have been developed by a few groups to this aim. In

one case, a perturbative expansion in W of the xc kernel obtained from the equality of the two

macroscopic dielectric functions, namely the one calculated with the Bethe-Salpeter equation

and the one calculated with the TDDFT screening equation, has yielded a result that already in

first order turned out to yield excellent optical spectra in solids [13]. Another approach is based

on the formal replacement of TDDFT kernel matrix elements taken in a basis of Kohn-Sham

transitions with Bethe-Salpeter matrix elements, and arrives to the same formula and of course

to numerical results of similar quality [12]. Finally, by recognizing that the same physics should

be represented by the MBPT and the TDDFT equations, Stubner, Tokatly and Pankratov have

developed a diagrammatic approach to the derivation of improved exchange-correlation kernels

[14]. Again the same result for the effective xc kernel is obtained.

A final point to notice is that the xc correlation kernel derived above has a long range (1/r) tail in

real space, and hence a small-q behavior of type α/q2, clearly visible from the equations. Hence

it is possible to avoid the cumbersome calculation of α, that is of the kernel itself, looking instead

for the α values which yield the best optical spectra. Even this very simple approach works well,

and leads to good optical spectra using α values ranging from -0.2 for semiconductors to -1

for insulators. It is found that these values are roughly inversely proportional to the dielectric

constant [18].

In conclusion, at present, at least three seemingly completely different approaches have hence

led independently to the same expression for the effective xc correlation kernel, Eq. (27), which

yields optical and energy loss spectra very close to those derived within the BSE approach. The

present work sheds light on the deep reasons for their coincidence and success.

3.2 Density variations in MBPT: the idea and the equations

In the way TDDFT and MBPT are hence usually presented, self-consistent linear response in

TDDFT is determined by variations of the potential with respect to the density, whereas in

MBPT variations with respect to the one-particle Green’s function are the key ingredient. How-

ever, in both cases it is a local external potential that actually creates these variations. Therefore,

we have suggested that also in the case of MBPT one might rely on the fact that density vari-

ations determine the physics when the system is polarized. In practice, this means that one

can use the Runge-Gross theorem of TDDFT [11] in order to rewrite δΣ/δV in Eq. (4). The

one-to-one relation between time-dependent densities and external potentials, or consequently

between the densities and the classical potentials V , allows one then to use an alternative chain

rule to express δΣ/δV , namely (δΣ/δρ)(δρ/δV ).

Equation (4) hence becomes

Γ(1, 2; 3) = δ(1, 3)δ(2, 3) +
δΣ(1, 2)

δρ(4)
P (4, 3), (16)

where P = δρ/δV is the irreducible polarizability that, as explained above, is usually calculated

by solving the vertex equation. However, by integrating Eq. (16) with two Green’s functions G,
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one directly obtains

P (1, 2) = P0(1, 2) + P0(1, 3)f
eff
xc (3, 4)P (4, 2), (17)

with P0(1, 2) = −iG(1, 2)G(2, 1) and the two-point kernel

f eff
xc (3, 4) = −iP−1

0 (3, 6)G(6, 5)G(5′ , 6)
δΣ(5, 5′)

δρ(4)
. (18)

In other words, one can now first determine the two-point irreducible polarizability P from the

integral Eq. (17), and subsequently the three-point vertex Γ via the integration of Eq. (16). From

P , the reducible polarizability P red is obtained via P red = P + PvP red.

Finally, the self-energy becomes

Σ(1, 2) = iG(1, 2)WTC-TC(2, 1) + iG(1, 4)
δΣ(4, 2)

δρ(5)
P red(5, 3)v(3, 1+). (19)

The first term has the GW form, but with the testcharge-testcharge (TC-TC) screened Coulomb

interaction WTC-TC = (1+vP red)v, instead of the RPA one. In this expression, the term vP redv

creates the induced Hartree potential felt by a classical charge. The additional term (δΣ/δρ)P red

in Eq. (19) is responsible for the missing induced xc potentials that act on an electron or hole.

It is therefore useful to reformulate Eq. (16) as

Γ(1, 2; 3)=δ(1, 3)δ(2, 3)+δ(1, 2)f eff
xc (1, 4)P (4, 3)+∆Γ(1, 2; 3) (20)

where

∆Γ(1, 2; 3) =

(

δΣ(1, 2)

δρ(4)
− δ(1, 2)f eff

xc (1, 4)

)

P (4, 3). (21)

The “non-locality correction” ∆Γ has no effect on P , as one can see by integrating Eq. (21) with

two Green’s functions and using Eq. (18). In the self-energy of Eq. (19), the inclusion of the

two first terms of Eq. (20) (called Γ(2)) leads to Σ = iGW̃ with a modified screened Coulomb

interaction W̃ = (1 + (v + f eff
xc )P red)v. This is a testcharge-testelectron (TC-TE) screened

Coulomb interaction instead of W TC-TC; this expresses the fact that an additional electron or

hole in the system cannot be described as a classical charge. ∆Γ yields then in Σ a non-vanishing

correction term. One can understand this by the fact that, contrary to the polarizability P that

contains the response of the (quantum) system to an external (classical) perturbation, Γ has to

contain the information that the screening in Σ has to act on an electron or hole. Hence, the

screened object “feels” an exchange-correlation induced potential. Since we are talking about

quasi-particles, this potential is necessarily non-local.

Equation (17) is a two-point equation for the polarizability, like in TDDFT; it is however in-

volving the “polarizability” P0 of independent quasi-particles. It is hence not a TDDFT, but

a sort of hybrid equation. The advantage over TDDFT is that the set of equations still leaves

accessible the observables of the original equations like QP energies, whereas this would not be

the case in pure TDDFT.

3.3 The link to TDDFT

The link with TDDFT can be made by the fact that the diagonal of G yields the exact time-

dependent density −iG(1, 1+) = ρ(1) [19]. δG/δρ = −G(δG−1/δρ)G leads to

iG(1, 3)G(4, 1+)
δG−1(3, 4)

δρ(2)
= δ(1, 2). (22)
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Since the same exact density, and hence the same Hartree potential, should also be obtained

from the Kohn-Sham potential vKS = V + vxc we can write

G−1(1, 2) = G−1
0 (1, 2) − δ(1, 2) [vKS(1)−vxc(1)]−Σ(1, 2). (23)

As δG−1
0 /δρ = 0, Eq. (22) becomes

P0(1, 3)χ
−1
0 (3, 2) − iG(1, 3)G(4, 1+)

δΣ(3, 4)

δρ(2)
− P0(1, 3)fxc(3, 2) = δ(1, 2), (24)

where χ0(12) = δρ(1)/δvKS(2) is the KS independent particle polarizability and fxc(1, 2) =

δvxc(1)/δρ(2) is the xc kernel of TDDFT. This kernel turns out to consist of two terms, namely

f
(1)
xc and f

(2)
xc , with f

(2)
xc exactly equal to the f eff

xc arising from our previous approach and

f (1)
xc (1, 2) = χ−1

0 (1, 2) − P−1
0 (1, 2). (25)

f
(1)
xc has the effect to change the KS response function into the independent QP one, in partic-

ular, to solve the so-called band gap problem. f
(2)
xc accounts for the electron-hole interaction.

This splitting [14] is physically intuitive. Altogether, TDDFT yields then for the irreducible

polarizability P,

P = χ0 + χ0(χ
−1
0 − P−1

0 + f eff
xc )P. (26)

This is equivalent to Eq. (17).

3.4 Approximations in practice

Of course, in spite of this apparent simplification, one stills faces an unsolvable problem, unless

approximations are made. The big advantage of writing the formula in the present form is

in fact that they suggest rather straightforward approximations. In particular, in order to

get an explicit expression for f eff
xc , we choose a starting approximation for the self-energy, and

consistent approximations for the functional derivative of Σ and for G, on the right side of

Eqs. (18) and (19). A simple choice could be to take Σ, G and P0 as derived from a local and

adiabatic xc potential, e.g. the LDA one. This leads of course to the TDLDA and the GWΓ

approach of Ref. [7]. A better choice is to start from the GW approximation for Σ, taking W as a

screened (e.g. static RPA) Coulomb interaction. For the functional derivative, one can now fully

use the experience made using the BSE; in particular, this suggests to neglect also in the present

framework the derivative of W with respect to ρ. One still has to find a good approximation for

the term δG/δρ. If one would choose a starting Σ obtained from a self-consistent GW calculation,

one would have to evaluate δG/δρ = −G(δG−1/δρ)G = G(P−1 + (δΣ/δρ))G: one would again

end up with an integral equation now for δΣ/δρ, similar to the one depicted in Fig. 2(b) of

Ref. [14]. However, again based on previous experience in MBPT calculations, one can suppose

the Green’s function on Σ = iGW to be obtained from a suitable local potential, preferably

with eigenvalues close to the GW ones. This leads approximately to δG/δρ = GP −1
0 G.

We obtain hence from Eq. (18)

f eff
xc (3, 4) = P−1

0 (3, 6)G(6, 5)G(5′ , 6)W (5, 5′)G(5, 7)G(7, 5′)P−1
0 (7, 4). (27)
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The present derivation is not the first attempt that leads to Eq. (27) [12, 13, 14]. Below, we

will show results that we have obtained previously using this formula. However, we believe that

the approach outlined here sheds light on the question why the former derivations had led to

such (unexpectedly) good results: the physics of the variation of the self-energy upon excitation,

which gives rise to the electron-hole interaction, can be captured in terms of density variations

only. This is very important, since it encourages the use of the present scheme also for cases

where one wishes to go beyond the above approximations. In particular, it is now clear how any

improvement made on the approximations with respect to standard Bethe-Salpeter calculations

can be straightforwardly extrapolated to the kernel Eq. (18).

4 Numerical results

Results using the approximation of Eq. (27) or similar approximations have been published by

ourselves and by other authors concerning absorption and loss spectra [12, 13], and QP lifetimes

[9]. Here we give some of our illustrations.

4.1 Optical spectra

It is instructive to apply Eq. (27) to the calculation of optical spectra of realistic materials, to

understand the role of the two parts f
(1)
xc and f

(2)
xc of the TDDFT kernel. Figure 1 provides

calculations of optical absorption spectrum of bulk silicon using the three highest valence bands

and the three lowest conduction bands, a regular grid of 512 slightly shifted k-points in the full

Brillouin zone, and an imaginary part in the energy denominators η = 0.1 eV.

As the figure shows, the TDLDA approach fails to reproduce the optical absorption, since both

the band gap and the oscillator strengths of the main peaks are wrong. On the contrary,

following our comparison between TDDFT and Green’s functions, we have to evaluate the two

contributions to the TDDFT kernel. The first term f
(1)
xc accounts for the one-quasiparticle xc

effects. It transforms the KS response function χ0 into the GW independent quasiparticle P0.

The corresponding curve in figure 1 gives the correct band gap. At this level, electron-hole

interaction xc effects are still absent, as it is evident in the remaining blue shift of the spectrum

and the underestimation in the oscillator strength of the first excitonic peak. The second term

f
(2)
xc accounts for the two-particle xc effects. If the same technical approximations as in BSE are

used (use of a static W , neglect of the derivative of W with respect to G), the corresponding

curve closely reproduces the solution of BSE, which is the current state-of-the-art concerning

calculations of optical absorption.

The same considerations also apply to the example of another system, silicon carbide, whose

optical absorption is shown in Fig. 2.

4.2 Quasiparticle energies

It is also interesting to see what one obtains when using this scheme to go beyond the GW ap-

proximation for the calculation of band gaps in semiconductors and insulators. Since systematic

88



2 4 6
ω (eV)

0

10

20

30

40

50

60

Im
 {

 1
/(

1 
+

 v
 χ

) }

Expt.
TDLDA
TDDFT f

xc

(1)

TDDFT f
xc

(1)
 + f

xc

(2)

BSE

Figure 1: Optical absorption spectrum of bulk silicon calculated within different approximations

and compared to experimental data of Ref. [20]. The dashed line represents the TDLDA curve,

the dot-dashed line the TDDFT kernel using f
(1)
xc of the text only, the full line the full TDDFT

kernel of the text. The Bethe-Salpeter equation’s solution (crosses) and the experimental curve

(full circles) are given for comparison.
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Figure 2: Optical absorption spectrum of bulk silicon carbide calculated within different ap-

proximations and compared to experimental data of Ref. [21]. The dashed line represents the

TDLDA curve, the dot-dashed line the TDDFT kernel using f
(1)
xc of the text only, the full line

the full TDDFT kernel of the text. The Bethe-Salpeter equation’s solution (crosses) and the

experimental curve (full circles) are given for comparison.

GWΓ studies in literature are available only for a short-range (LDA) kernel [7], we provide here

a discussion on the influence of a long-range contribution on QP energies.

For illustration, we present in Tables 2 and3 results on bulk silicon and solid argon (obviously,
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the effect of a long-range contribution is particularly interesting in a solid, and silicon and argon

represent two extreme cases, the first one with strong screening and continuum excitons, the

second one with almost no screening and strongly bound electron-hole pairs).

The first series of results, presented in Table 2, uses LDA as starting approximation for the

right-hand side of Eq. (19), whereas the second series in Table 3 uses the static but nonlocal

“Coulomb-hole-plus-screened exchange” (COHSEX) approximation to GW [2]. In the latter

case, we use the kernel f eff
xc given by Eq. (27) which, although approximate, has the correct long-

range behavior [12, 13, 22]. Furthermore, LDA wavefunctions are used throughout: we suppose

them to be similar to the COHSEX QP ones.

The two tables show the band gap at Γ for both materials under study. The first column

gives the band gap that is obtained from the respective starting approximation (i.e. LDA or

COHSEX). The second column uses this band structure, and provides the subsequent standard

non-self-consistent GWRPA. Columns 3 and 4 show the band gap for the approximations to the

self-energy derived in this work, using either W TC-TC (first part of Eq. (19)) or W̃ (neglect of

only ∆Γ). Finally, the experimental value is given in the last column [23]. Both materials show

similar tendencies. In particular, there is a significant influence of the single-particle energies

on the GWRPA (second columns). The choice of COHSEX energies in W simulates the effect of

the contribution f
(1)
xc of Eq. (25). In most cases, the electron-hole vertex correction f eff

xc = f
(2)
xc in

W TC−TC closes the gap (third columns) with respect to RPA. When f eff
xc is included according

to Eq. (19) in order to evaluate the explicit vertex in Σ = iGW TC−TCΓ(2) = iGW̃ (fourth

columns), there is a strong opening of the gap. Our most complete result is hence determined

by a series of cancellations. The overall behavior of both kernels under study (arising from LDA

or the non-local COHSEX scheme) is very similar, even though the LDA kernel does not have

the crucial, correct long-range contribution [22]. These results roughly justify calculations using

the RPA GW form constructed with QP energies instead of KS ones. The GWΓ gap turns

out to be slightly bigger than the experimental value. In order to obtain improved agreement,

one should of course avoid some of the above approximations; in particular we expect the non-

locality correction to decrease the gap, since the neglected term should reduce the effect of the

external vertex. Those and other more sophisticated numerical calculations (including, e.g.,

self-consistency in the wavefunctions) are however beyond the scope of this illustration.

5 Conclusions

In conclusion, using the concept of the density as crucial quantity we have derived a complete

new set of equations for the many-body vertex, polarizability and self-energy. This approach

does not require the solution of integral equations containing a four-point kernel. In particular,

the polarizability is directly obtained from a two-point equation, containing a two-point many-

body kernel f eff
xc , which completely changes the way e.g. excitonic effects can be calculated. The

exchange-correlation kernel of TDDFT turns out to differ from f eff
xc by a term that is essentially

responsible for the gap correction. Our approach explains the success of previously published

approximations for the kernel and allows one to go beyond in a systematic way. On top of this

progress concerning TDDFT, the approach also opens the way for better approximations to the
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LDA GWRPA GWTC-TC GW̃ Expt.

Si 2.53 3.17 3.08 3.18 3.40

Ar 8.18 12.95 12.64 12.75 14.2

Table 2: Direct gap (in eV) at Γ in bulk silicon and solid argon, calculated using a local

approximation (LDA) for the starting self-energy (see text).

COHSEX GWRPA GWTC-TC GW̃ Expt.

Si 3.64 3.30 3.18 3.32 3.40

Ar 14.85 14.00 14.16 14.76 14.2

Table 3: Same as Table 2, but based on a non-local approximation (COHSEX) for the starting

self-energy.

self-energy and other many-body quantities.

These steps forward could be achieved by combining two fundamentally different frameworks.

We think that this might be a nice illustration for the strength of a network like Ψk, that tries

to bring together different communities of people working on similar problems. The present

work has in fact benefitted from many formal and informal meetings; in particular, we are

grateful for discussions with C.-O. Almbladh, U. von Barth, J. F. Dobson, A. Marini, A. Rubio,

G. Stefanucci, R. van Leeuwen, and N. Vast. We also acknowledge support from the the EU’s

6th Framework Programme through the NANOQUANTA Network of Excellence (NMP4-CT-

2004-500198), and computer time from IDRIS (project 544).
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