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We present an ab-initio study of GaP bulk as a test case to show the importance of going beyond
the single particle Density Functional Theory (DFT) scheme in the calculation of excited state
properties. The inclusion of many-body effects within the GW approach for the determination of
electronic gaps, and of excitonic effects in the calculations of the dielectric function, is discussed.
Comparison with one-particle DFT results and with experimental data are presented.

1. Introduction
Density Functional Theory (DFT) [1] has been shown to be a powerful tool in describ-
ing ground state properties of many-particle systems as, for example, equilibrium geo-
metries for different growth conditions, adsorption energies of atoms on surfaces, and
so on. However, it is known that the agreement between DFT and experimental band
structures is not satisfactory: the calculated electronic band gaps severely underesti-
mates the experimental ones. Moreover, the DFT optical spectra, even if often in quali-
tative agreement with experiment, do not show a quantitative agreement: typically, in the
dielectric function of a semiconductor, the positions of the optical peaks are redshifted
and the intensity of the first peak is underestimated. The problems originating from the
use of a single particle ground state theory as DFT can be solved when using an ex-
cited state theory approach. In fact, in order to measure the photoemission energy or
the optical spectrum, the system must undergo an excitation; this excitation can be
realized with photons (as in photoemission and absorption) or with electrons (as in
inverse photoemission, to probe the empty states). Hence, excited states are involved.
Moreover, a single particle theory does not describe optical absorption experiments: the
excited electron can interact with the hole left behind. This two-body interaction is
called exciton. In this paper, we study the gallium phosphide bulk as an example for
III–V semiconductors. We calculate the quasiparticle energy levels within the GW
scheme, and the excitonic effects are included by solving a Bethe-Salpeter equation.

2. Calculation of Quasiparticle Energies within the GW Method
The Kohn-Sham single-particle energies, defined as the eigenvalues of the DFT equa-
tion, are not the electron addition or removal energies. This can be seen from Table 1
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comparing the DFT-LDA and the experimental electronic gaps for GaP. The discre-
pancy is general, as can be seen in Fig. 1 where for different III–V semiconductors the
DFT-LDA electronic minimum gap is compared with experiment. Note that the equili-
brium lattice constant alat, being a ground state property, is in reasonably good agree-
ment with experiment.
The proper way to solve the problem of calculating the excitation energies of a sys-

tem is to solve the so called single quasiparticle Eq. (2)

ð� 1
2r2 þ Vext þ VHÞ Y jðrÞ þ

Ð
Sðr; r0; eQPj Þ Y jðr0Þ dr0 ¼ eQPj Y jðrÞ ; ð1Þ

where VH is the Hartee potential and S is a non local, energy dependent, non-hermi-
tian potential that describes the exchange and correlation effects of the many-electron
system. It is called “quasiparticle equation” because it describes the extra hole cre-
ated when an electron is extracted from the system (for example in a photoemission
experiment; or, in an inverse photoemission experiment, the extra electron added to
the system) and the polarization cloud that the other electrons create in order to
screen it. Due to the non-hermiticity of S, the energies eQP are in general not real:
the imaginary part gives the life time of the excited particle. The self-energy S is
defined by a set of coupled equations [2] involving Green’s functions, screened Cou-
lomb interaction and polarizability. They are very difficult to solve even for simple
systems. A successful way to deal with this problem is to approximate the self-energy
with an expression that corresponds to solve the set of coupled equations in a itera-
tive way, starting from S ¼ 0 (Hartree) and ending with the first iteration: S ¼ iGW,
where G is the single particle Green’s function and W is the screened Coulomb inter-
action (W ¼ E�1v). The common way [3] to calculate S is to use the DFT indepen-
dent single particle G and, for E�1, the inverse of the dielectric function E computed

in DFT within the independent single parti-
cle approach (also called Random Phase
Approximation: RPA) [4].
The results for GaP and other III–V

semiconductors, using a set of 256 k-points
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Tab l e 1
Transitions energy (in eV) at the high symmetry points of the Brillouin zone for GaP.
alat is the lattice constant (in �A), Egap the indirect gap. Experimental values are from [5]

alat G X L E0
0 E00

0 Egap

LDA 5.41 2.0 4.2 2.8 4.0 8.6 1.5
GW 2.8 5.0 3.6 4.9 9.3 2.3
exp. 5.45 E0 : 2:869 E2 : 5:21� 5:36 E1 : 3:785 4.77 9.38 2.35

E0 þ D0 : 2:949 E1 þ D1 : 3:835 E0
0 þ D0

0 : 4:85

Fig. 1. Lattice constant and minimum gap for sev-
eral bulk III–V semiconductors. * DFT-LDA,
& GW, ^ experiment



in the BZ and 18 Ry energy cutoff in the LDA calculation (12 Ry in the GW), are
shown in Table 1 and in Fig. 1. The agreement between GW and experimental energy
gaps is improved compared with DFT-LDA results, but still discrepancies larger than
0.2 eV are present.

3. Dielectric Function: Inclusion of Excitonic Effects

In this section we discuss the theory and the computational method used to calculate
the dielectric function including the electron–hole interaction. In fact it is well known
that a correct description of the optical absorption spectra in semiconductors and insu-
lators requires the inclusion of the excitonic effects. Due to the fact that this kind of
computation can be very cumbersome, because a two particle Bethe-Salpeter equation
must be solved, first-principle calculations of the optical properties of different materi-
als, including excitonic effects, have appeared only in the last years [6].
The absorption spectrum is given by the imaginary part of the macroscopic dielectric

function EM

EMðwÞ ¼ 1� lim
q!0

vðqÞ ĉcG¼0;G0¼0ðq;wÞ ; ð2Þ

where ĉcðr; r0;wÞ ¼ �iSðr; r; r0; r0;wÞ. The four-point function S obeys the Bethe-Salpeter
equation,

Sð1; 10; 2; 20Þ ¼ S0ð1; 10; 2; 20Þ þ S0ð1; 10; 3; 30Þ Xð3; 30; 4; 40Þ Sð4; 40; 2; 20Þ : ð3Þ

The notation (1,2) stands for two pairs of space and time coordinates, ðr1; t1; r2; t2Þ. Re-
peated arguments are integrated over. The term S0ð1; 10; 2; 20Þ ¼ Gð10; 20ÞGð2; 1Þ yields
the independent-particle polarizability c0 from which EM without excitonic effects is ob-
tained (Gð1; 10Þ is the one-particle Green’s function [7]). The kernel X contains two
contributions:

Xð1; 10; 2; 20Þ ¼ �idð1; 10Þdð2; 20Þ vð1; 2Þ þ idð1; 2Þ dð10; 20ÞWð1; 10Þ : ð4Þ

Considering the first term in the calculation of S is equivalent to the inclusion of
local field effects in the matrix inversion of a standard RPA calculation. In order to
obtain the macroscopic dielectric constant, the bare Coulomb interaction v contained in
this term must, however, be used without the long range term of vanishing wave vector
[8]. When spin is not explicitly treated, v gets a factor of two for singlet excitons. In the
second term, W is the screened Coulomb attraction between electron and hole. It is
obtained as a functional derivative of the self-energy in the GW approximation, ne-
glecting a term G dW=dG. This latter term contains information about the change in
screening due to the excitation, and is expected to be small [9]. We limit ourselves to
static screening, since dynamical effects in the electron–hole screening and in the one
particle Green’s function tend to cancel each other [10], which suggests to neglect both
of them. The set of Eqs. (2)–(4) are at the basis of all the ab initio exciton calculations
which have appeared in the literature recently (see for example Ref. [6] and references
therein).
In order to solve Eq. (3), we rewrite it as an effective eigenvalue problem,

P

ðn3; n4Þ
Hðn1; n2Þ; ðn3; n4Þ
exc Aðn3; n4Þ

l ¼ ElA
ðn1; n2Þ
l ; ð5Þ
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with

Hðn1 ;n2Þ; ðn3;n4Þ
exc ¼ ðEn2 � En1Þ dn1; n3dn2; n4 � iðfn2 � fn1Þ	

Ð
dr1 dr01 dr2 dr

0
2 wn1ðr1Þw*n2ðr

0
1ÞXðr1; r01; r2; r02Þw*n3ðr2Þwn4ðr02Þ: ð6Þ

The wnðrÞ are LDA Bloch functions, with n denoting a band index and a Bloch vector k.
For the calculation of absorption spectra, we can limit ourselves to transitions with posi-
tive frequency, i.e. ðn1; n2Þ and ðn3; n4Þ are pairs of one valence and one conduction band,
respectively (in other words, we consider only the resonant part). Moreover, we build up
the spectra of optical properties by considering only negligible momentum transfer,
hence the same k for the valence and the conduction state. Equation (2) reads then:

EMðwÞ ¼ 1þ lim
q!0

vðqÞ
P

l

P

v; c; k
hv; k� qj e�iqr jc; kiAðv; c; kÞ

l

��
�
�

��
�
�
2

ðEl � wÞ : ð7Þ

This calculation is generally very demanding because the matrix to diagonalize can be
very large. In fact the relevant parameters which determine its size are the number of
k-points in the BZ, the number of the valence bands Nv, the number of conduction bands
Nc which build the basis set of pairs of states. In this work we used a recent perturbative
approach [11, 12], to the solution of the Bethe-Salpeter equation which greatly reduces
the use of memory. It consists in a separate diagonalization of subblocks of the excitonic
Hamiltonian including the contribution of the missing terms in a perturbative way.
Particular care has to be taken for the convergence of the optical spectra with

the number of k-points used to sample the BZ. In Fig. 2 we plot the RPA imagin-
ary parts of the dielectric function of GaP obtained using different sets of k-points
in the calculation. DFT-LDA energies, obtained using 18 Ry energy cutoff and in-
cluding non-linear core corrections for Ga pseudopotential, have been used. Even
for a very large number of k-points (32000 in BZ), small spurious structures due to
the k-points sampling do appear. Because of the big computational effort, we could
use, in the excitonic calculation, a maximum of 2048 k-points in the BZ, which give
anyway a convergence comparable with using 32000 k-points.

The experimental imaginary
part of the dielectric function of
GaP is shown in Fig. 3 together
with the theoretical results ob-
tained with different level of ap-
proximations in the calculation.

1264 O. Pulci et al.: Many-Body Effects on Electronic and Optical Properties of Bulk GaP

Fig. 2. Convergence test of the RPA
dielectric function for GaP (excitons
not included) using different sets of
k-points in the Brillouin zone. 2048
k-points give a satisfactory conver-
gence. DFT-LDA energies have been
used



We have used here a broadening of
0.1 eV (about a factor 2 larger than
the the experimentally determined
broadening at E1 [13]) to take into
account numerical noise due to a fi-

nite k-point sampling. In Fig. 3a, b we plot the RPA dielectric function (hence without
excitonic effects) calculated respectively using DFT-LDA (Fig. 3a) and GW (Fig. 3b) en-
ergy bands. The agreement with experiment is in both cases only qualitative. In Fig. 3c,
finally, excitonic effects are included (together with GW energy bands). It is evident that
the curve obtained including the excitonic effects is in better agreement with the experi-
mental result from Ref. [13] but still discrepancies appear. Our theoretical spectrum is, in
fact, redshifted respect to the experimental one. Inclusion of electron–phonon interaction
would further redshift the theoretical spectrum of about 0.07 eV [13].
Recently, a calculation of dielectric function of GaP within Time-Dependent Density

Functional Theory has appeared [14]. The result from de Boeij et al. [14] shows a pro-
nounced underestimation of E1 (when compared with the low temperature experiment)
and, as pointed out by the authors themselves, a quite large overestimation of the E0

0
and E2 peaks. The energetic position of the peaks, being determined with an ad hoc
scissor operator shift, is in good agreement with the experimental one.

4. Conclusions

We have presented a calculation of transitions energies and optical spectra of GaP
bulk. The electronic gaps, underestimated in DFT-LDA, are in better agreement with
experiment when calculated within the GW approach. The absorption spectrum con-
structed as a sum of independent transitions between quasiparticle states shows large
deviations from experiment. The inclusion of excitonic effects in the calculations
strongly improves the spectrum, yielding reasonable agreement with the measured one.
Remaining discrepancies might be attributed to the pseudopotential approach, approx-
imations in the calculation of the quasiparticle energies and/or limitations of the Bethe-
Salpeter approach in its present forms.

Acknowledgements We thank Prof. M. Cardona for helpful discussions. This work
has been supported by NANOPHASE Research Training Network Contract
No. HPRN-CT-2000-00167 and by INFM (project PRA 1-MESS). Computer facilities

phys. stat. sol. (a) 188, No. 4 (2001) 1265

Fig. 3. Solid line: experimental dielec-
tric function for GaP at T ¼ 15 K, after
[13]; dashed lines: a) RPA dielectric
function (excitons not included) ob-
tained with DFT-LDA energies, b)
RPA dielectric function (excitons not
included) obtained with GW energies,
c) dielectric function obtained with
GW energies and including excitonic
effects. All the spectra have been calcu-
lated using 2048 k in BZ and an artifi-
cial broadening of 0.1 eV
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