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Nanoelectronic devices smaller than the electron wavelength can be achieved in graphene with current

lithography techniques. Here we show that the electronic quantum transport of graphene subwavelength

nanodevices presents deep analogies with subwavelength optics. We introduce the concept of electronic

diffraction barrier to represent the effect of constrictions and the rich transport phenomena of a variety of

nanodevices. Results are presented for Bethe and Kirchhoff diffraction in graphene slits and Fabry-Perot

interference oscillations in nanoribbons. The same concept applies to graphene quantum dots and gives

new insight into recent experiments in these systems.
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Analogies play a prominent role in physics. They allow
the transfer of notions and concepts from one field to
another, thus providing deeper insights in both fields. In
particular, analogies between quantum transport and optics
have been suggested in the past. For instance, they have
been used to better understand coherent multiple scattering
of light [1], or reciprocally electronic transport as trans-
mission of optical waves [2]. More recently, optical con-
cepts have also been applied to analyze some electronic
properties of graphene [3].

In this Letter, we develop the analogy between quantum
transport and optics beyond those former attempts, and
bridge coherent electronic transport with subwavelength
optics. This is motivated by the exceptional electronic
coherence of graphene [4,5], both in its exfoliated and
epitaxial forms. The electron mean free path could ulti-
mately reach the micrometer range at room temperature
[6], and the electronic wavelength, close to the Dirac point,
is larger than 100 nm in exfoliated graphene [6] and even
larger than 500 nm in the lowest doped graphene layers [7]
of epitaxial graphene. From a technological point of view,
graphene can be patterned with standard or even STM [8]
lithography techniques into devices as small as one or a
few tens of nanometers, thus reaching the subwavelength
regime.

We present results for simple systems, which have opti-
cal analogues [9–13], such as slits and nanoribbons con-
necting two graphene half-planes. We consider also
quantum dots connected to semi-infinite graphene sheets.
We perform an exact numerical calculation of the low-
bias conductance within a tight-binding model [14] and
Landauer quantum transport formalism [2]. The Landauer
conductance can be computed by the standard principal
layer approach [2], but we used a new recursive numerical
algorithm [15] that we found more efficient. We introduce
the concept of electronic diffraction barrier to represent
the effect of constrictions at contacts. This provides a
simple way to describe the rich phenomena of transport

physics in a variety of subwavelength graphene nanodevi-
ces. Our results give new insights into the conductance
characteristics of graphene quantum dots [16,17], where a
chaotic Dirac billiard behavior has been recently observed
[16]. We propose a new interpretation of quantum dot
characteristics that we relate to the diffraction phenomena
when the electronic wavelength diverges at the Dirac point.
Conductance of graphene slits and diffraction by an

aperture—.We calculate the conductance of slits of various
width W, in a graphene sheet (Fig. 1), the graphene half-
planes having armchair edges. The thinnest slit consists of
only a single motif, i.e., a single hexagon. The wavelength
� of the incident Dirac electrons is related to the energy E
via �¼hvF=E, where vF ’106 ms�1 is the Fermi velocity.
In Fig. 1 we plot the low-bias conductance of the slits

as a function of W=�. We first notice (Fig. 1, inset) that
the conductance depends only on the ratio W=�, provided
that the wavelength is � & 4 nm, that is, for an energy
E * 1 eV. This scaling is related to the massless 2D Dirac

FIG. 1 (color online). Diffraction of electrons through a gra-
phene slit. Left: Geometry of a graphene slit. Right: Universal
scaling law of the low-bias conductance of the graphene slit as a
function of W=�. This shows the Bethe-like � � W quadratic
regime and the Kirchhoff-like � � W linear regime (see text).
The inset shows the conductance for slits of various widths W ’
0:8p nm, with p ¼ 1; 2; 3; . . . .
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equation, which is valid only in the low energy or long
wavelength limit in graphene. If a spinor c ðrÞ satisfies the
Dirac equation for the energy E and wavelength �, then the

spinor ~c ðrÞ ¼ c ðxrÞ satisfies the Dirac equation for the
energy ~E ¼ E=x and wavelength x�. Therefore, the con-
ductance shows a scale invariance gðx�; xWÞ ¼ gð�;WÞ.
As a consequence, the conductance only depends on a
reduced variable W=�, gð�;WÞ ¼ gðW=�Þ [18]. Note
that a scaling relation can also exist for other geometries.
In that case, the conductance of the circuit will depend only
on the ratio between the characteristic lengths of the circuit
and the wavelength �.

In the limit W=� � 1, the low-bias conductance is
quadratic, with the conductance gðW=�Þ ’ 50ðe2=hÞ�
ðW=�Þ2, while in the opposite limit W=� � 1, the con-
ductance is linear with gðW=�Þ ’ 5ðe2=hÞðW=�Þ. The
crossover between the two regimes occurs around W=� ’
0:2–0:5. This is similar to the findings in classical optics
and consequently offers an immediate interpretation: the
conductance response of a graphene slit is a clear mani-
festation of a diffraction phenomenon. Indeed, we can
identify two different diffraction regimes: for wavelengths
� � W, much larger than the aperture, we observe a
Bethe-like diffraction regime [9] with a slit transmitted
energy proportional to the square of the aperture. On the
other hand, � � W corresponds to a Kirchhoff-like dif-
fraction regime, where the transmitted energy is propor-
tional to the aperture. In the short wavelength limit
diffraction is a perturbation phenomenon and a semiclas-
sical description of the electrons as ballistic wave packets
is applicable. Consequently, the transmitted current is pro-
portional to the section of the slit W and the conductance
diverges for large slits. By contrast, in the subwavelength
regime the transmission is lower than expected from the
semiclassical picture and can be viewed as a coherent
tunneling process.

Note that for narrow graphene ribbons somewhat similar
ideas have also been proposed [5]. A decrease of the
transmittance at the Dirac energy has also been obtained
for constrictions on graphene nanoribbons [20]. Diffraction
effects in the Kirchhoff regime could also arise at the lead
mouth of quantum billards [21].

Nanoribbons as Fabry-Perot interferometers and sub-
wavelength waveguides.—Here we study the quantum
transport response of finite-length metallic graphene nano-
ribbons. We consider two metallic ribbons of zigzag and
armchair orientation, respectively. Both have one conduct-
ing channel at the Dirac energy [22]. The geometry is
presented in Fig. 2: the length of the armchair nanoribbon
is 6 and 3 nm for the zigzag ribbon. The calculated con-
ductance for both ribbons is shown in Fig. 2. Similarly to
the slit geometry, we observe a zero conductance value at
the Dirac point. However, in the ribbon case, another
important feature is the large amplitude of the conductance
oscillations.

We now demonstrate that these systems behave as
Fabry-Perot cavities, like subwavelength optical metallic
waveguides [11–13]. The Fabry-Perot oscillations are due
to the reflection at the ends of the nanoribbons, and the
low-bias conductance varies like the Fabry-Perot transmit-
tance, which is the Airy function:

TFPðEÞ ¼ 1

1þ FðEÞsin2½�ðEÞ=2� ; (1)

where �ðEÞ ¼ 2kðEÞLþ 2 ~�ðEÞ is the phase difference
after one back and forth reflection at each end of the
nanoribbon. kðEÞ is the wave vector of the Bloch state in

the infinite ribbon at the energy E. ~�ðEÞ is the phase factor
acquired at each reflection. L is the length of the Fabry-
Perot interferometer. FðEÞ ¼ 4RðEÞ=½1� RðEÞ�2 is the
finesse coefficient and RðEÞ ¼ 1� TðEÞ is the reflection
coefficient at each end of the nanoribbon, that is, at the
ribbon–half-plane junction.
In accordance with our numerical results, the Airy func-

tion presents maxima Tmax
FP ¼ 1, when �=2 is an integer m

multiple of �. For sufficiently large L the phase �ðEÞ ¼
2kðEÞLþ 2 ~�ðEÞ varies rapidly with energy, as compared
to FðEÞ. The minima occur when sin2ð�=2Þ is maximum,
that is, at �=2 ¼ m�þ �=2. The envelope of the minima
follows the function

Tmin
FP ðEÞ ¼ 1

1þ FðEÞ ¼
½1� RðEÞ�2
½1þ RðEÞ�2 : (2)

In particular, Eq. (2) is independent of the ribbon length,
which agrees with our numerical calculations on nano-
ribbons of various lengths (not shown here). More specifi-
cally, the minimum of the transmission tends to zero at the
Dirac energy, which indicates that RðEÞ tends to 1 at zero
energy.
Another characteristic feature of the Fabry-Perot reso-

nances is their width. The full width at half maximum of

FIG. 2 (color online). Left: Schematic view of nanoribbons
contacted to graphene half-planes. The exact geometry of the
junction is presented in Fig. 3. Right: Fabry-Perot oscillations in
the low-bias conductance of armchair (upper panel) and zigzag
(lower panel) nanoribbons. The envelope of the conductance
minima follows almost perfectly Eq. (2), which is plotted with a
dashed curve for RðEÞ taken from Fig. 3. See text.
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the peaks is �EFWHM ¼ �� dE
d� ¼ ��vðEÞ

2L , where �� ¼
2ð1� RÞ= ffiffiffiffi

R
p

and vðEÞ is the group velocity at energy E.
For the armchair nanoribbon the velocity is finite, such that
the peaks are narrow when R is close to 1, and broaden
when R ! 0. In our conductance calculation, when E ! 0
the peaks have negligible width, which confirms that R !
1. For zigzag nanoribbons both vðEÞ and TðEÞ ¼ 1� RðEÞ
tend to zero at the Dirac energy and lead to fine peaks.

Fabry-Perot oscillations occur in many devices through
which the electron wave is transmitted, in particular, in
nanotubes or graphene devices [23]. Yet the reflection at
the ends of the device is usually only partial, whereas in the
present study the reflection is total at the Dirac point due to
diffraction. Consequently, close to that point the conduc-
tance minima are nearly zero. Let us consider, as a simple
criterion, that resonances are well defined if the maximum
to minimum ratio of the conductance is greater than 2. In
our calculations this corresponds to the condition �=W *
3–5, where W is the width of the nanoribbon.

Concept of electronic diffraction barrier at a constric-
tion.—We now analyze the reflection at the end of the
nanoribbon. For this, we consider the response of one
elementary junction consisting of a graphene half-plane
connected to a semi-infinite metallic zigzag or armchair
ribbons (Fig. 3). For a ballistic system (infinite ribbon, no
contact resistance and no reflection), the conductance
would be equal to 1 quantum of conductance (2e2=h)
(dot-dashed line in Fig. 3). Instead, the calculated trans-
mittance TðEÞ through the junction (continuous line in
Fig. 3) drops to zero at the Dirac energy, for both chiral-
ities, exactly like in slits and nanoribbons. The only effect
of the ribbon electronic structure is to produce a slight
difference in the TðEÞ characteristics, with the zigzag
conductance showing a more cusplike feature at the
Dirac energy. The transmittance of this elementary junc-
tion defines the characteristics of the elementary electronic
diffraction barrier. The electronic diffraction barrier is at

the basis of the universal behavior observed in all the
devices studied here.
The resistance of the metallic ribbon is independent of

its length and depends only on the incident wavelength (or
energy), which is a genuine manifestation of the contact
resistance at the junction. For instance, back to the nano-
ribbon case, we plot ½1� RðEÞ�2=½1þ RðEÞ�2 (dashed
curve in Fig. 2) with RðEÞ ¼ 1� TðEÞ extracted from
Fig. 3 for the elementary junction. This curve turns out
to be the envelope of the Fabry-Perot oscillations minima
of the nanoribbon conductance, as expected from Eq. (2).
Conductance of a quantum dot.—We now turn to more

complicated structures and consider a quantum dot (Fig. 4)
consisting of a purposely irregular shape graphene nano-
structure contacted via small apertures to the two half-
planes graphene leads. We note that the conductance of
this system (Fig. 4) presents a maximum around 3 eV,
which is the energy of the van Hove singularity of bulk
graphene where the density of states diverges. The maxi-
mum value of the conductance can increase indefinitely if
the size of the dot and of its junction with the graphene
plane increases. The conductance decreases when going to
the Dirac point. This is a signature of the lower number of
available states at the Dirac point. The maximum to mini-
mum transmission ratio between adjacent peaks is much
larger in the vicinity of the Dirac energy than at other
energies. This is also observed in the nanoribbons studied
above. Again this can be explained by the presence of two
diffraction barriers at the contacts that are nearly com-
pletely reflecting (R ¼ 1) at the Dirac energy. This leads
to well-defined states within the quantum dot, and thus
well-defined conduction channels through these states. The
energy range with well-defined resonances can be identi-
fied with the same criterion as above, i.e., maximum to
minimum ratio greater than 2. This criterion gives a critical
wavelength of order of � ’ 4 nm for a widthW ¼ 1:2 nm.
This is the same range of values of �=W as in nanoribbons,
i.e., �=W * 3–5.

FIG. 3 (color online). Electronic diffraction barrier at a con-
tact. Left: The contact geometries of the armchair (upper panel)
and zigzag (lower panel) semi-infinite ribbons, having a width of
five hexagons, coupled to graphene half-planes. Right: Con-
ductance g for each device of the left panels. g ¼ 2e2=hT
with T the transmittance of the diffraction barrier.

FIG. 4 (color online). Low-bias conductance of the quantum
dot, showing well-defined resonances close to the Dirac energy.
Inset: Geometry of the irregular shaped quantum dot coupled to
the graphene half-planes.
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Experimental consequences.—The computed character-
istics of our quantum dot (Fig. 4) look quite similar to the
experimental result of Ponomarenko et al. (Ref. [16],
Fig. 1). In those experiments the electronic wavelength is

� ’ 130 nm=
ffiffiffiffiffiffiffiffiffi
jVgj

q
[24], where Vg is the gate voltage

variation with respect to the Dirac point (in volts). In those
experiments resonances are well defined for a wavelength
� to apertureW ratio �=W * 3–5 in reasonable agreement
with our numerical estimate. Ponomarenko et al. also
report the low-bias conductance of 20 nm constrictions
(Ref. [16], Fig. S2), similar to the slits studied here. First
of all, after our study of slits, the linear Kirchhoff-like
regime is reached at voltages Vg � 10 V. For higher volt-

ages we predict a conductance gðW=�Þ ’ 5ðe2=hÞðW=�Þ ’
0:75ðe2=hÞ

ffiffiffiffiffiffiffiffiffi
jVgj

q
for a 20 nm slit. This is consistent with

the experimental results. For instance, at Vg ¼ 100 V we

predict G ’ 7:5e2=h, in good agreement with the experi-
mental value G ’ 5:5e2=h. On the other hand, the com-
parison of our results with the smaller 10 nm experimental
constriction is not so good. Indeed there is evidence of
thermally activated transport for the 10 nm constriction,
which suggests a noncoherent transport mechanism.

To conclude, our work establishes an important link
between nanoelectronics and subwavelength optics. We
have developed the concept of electronic diffraction barrier
which allows us to explain the conductance characteristics
in terms of diffraction and interference phenomena for
systems such as graphene junctions, slits, nanoribbons,
and quantum dots. The deep analogy between quantum
transport and optics that we have shown is a consequence
of both the ondulatory nature of electrons and their linear
dispersion in graphene, as for photons. Yet we believe that
also for other dispersion relations, such as quadratic dis-
persion, similar effects can be observed as well. In particu-
lar, no matter the electronic structure, the ratio between the
electronic wavelength and the characteristic size of the
system remains a key parameter. We believe that the anal-
ogy developed here can be further pushed forward in the
design of devices with new properties.
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