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We show an approximate method to calculate the polarizability of a many-electron system within Green’s 
function theory in a similar way as within time-dependent density functional theory (TDDFT). The basic 
idea is to join the computational simplicity of the latter with the accuracy of the former. We apply this ap-
proach to a prototype system, LiF. For comparison, we also show results obtained within other approxi-
mated TDDFT-based methods. 
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1 Introduction 

The inclusion of the electron–hole (e–h) interaction is crucial to calculate absorption spectra of semi-

conductors in good agreement with experiments [1]. This occurs because electron wavefunctions are 

strongly affected by the electron–hole interaction even in the energy range of band-to-band transitions. 

However, the inclusion of this interaction in ab initio calculations is computationally very cumbersome. 

So far it has been considered for a number of (simple) systems, from small atomic clusters [2] to bulk 

crystals [3–5] to surfaces [6–9]. Its application to more complex systems, like surfaces with complex 

reconstructions or biological systems, is still hampered by computational limitations. These arise from 

the fact that one has to solve the Bethe–Salpeter equation for the two-particle (electron and hole) 

Green’s function, rather than a single-particle equation as in band theory (for a short review, see the 

paper by Pulci et al. in this volume). It would be highly desirable to develop a simpler method to deal 

with the e–h interaction. 

 A hint about how to reach this goal comes from time-dependent density functional theory (TDDFT) 

[10], where all many-body (MB) effects are embodied in the frequency-dependent exchange-correlation 

kernel 
xc
( )f ω, ¢;r r , which accounts for exchange-correlation (xc) in the linear response. Once it is 

known, the calculation of the polarizability and of the dielectric function proceeds in the Kohn–Sham 

scheme [11] as for independent electrons. The problem is that 
xc
( )f ω, ¢;r r  of TDDFT is not known and 

any approximation to it based on the homogeneous electron gas will miss important features of semicon-

ductors and insulators [12]. 

 Following this suggestion, a many-body xc kernel similar to that of TDDFT has been defined  

[13–15], to be used with the independent-quasiparticle polarizability obtained within Green’s function 
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theory [16]. It is defined in terms of the so-called vertex function, (1 2; 3)Γ , . A suitable approximation 

has been found for it, by comparison with the excitonic hamiltonian of the BSE approach. However, in 

the TDDFT case the excitonic hamiltonian does not need to be diagonalized, which speeds up the calcu-

lations in a substantial way. It is quite surprising to notice that two seemingly different approaches, as 

that of Refs. [13, 14] and that of Ref. [15], yield the same formula for 
xc
( )f ω, ¢;r r  to first order in the 

screened Coulomb interaction W. A rationale for this surprising result has been found very recently, by 

reformulating Many Body Perturbation Theory using the density functional concept [17]. 

 In this paper we review in some detail the main steps which lead to determine the exchange correla-

tion kernel, following the approach of Refs. [13, 14]. The resulting kernel, 
xc
( )f ω, ¢;r r , clearly shows up 

a long range tail of the type | |α- / - ¢r r , which is the key ingredient to describe excitonic effects in ex-

tended systems. Exploiting this property, a simplified approach had been developed in Ref. [18] to speed 

up calculations, where the value of α  was chosen to reproduce the BSE optical spectrum. Such a simpli-

fied approach has been applied to many bulk semiconductors, yielding good results [19]. 

 In order to show how these approaches work in the case of insulators, we consider here LiF, a wide 

gap insulator, as a test case. This is a severe test, since strongly bound excitons occur [20]. The approach 

based on the ab-initio 
xc
( )f ω, ¢;r r  and the BSE yield mostly the same results. The simplified approach 

mentioned above, instead, can well describe the bound exciton with a suitable value of α , but the re-

maining part of the spectrum is not well described. Hence, in the case of LiF, any ω -independent xc 

kernel is not sufficient to produce good optical spectra. 

2 Theoretical background 

The charge density induced by a time-dependent perturbation is described by the irreducible polarizabil-

ity ( )P t t, ¢; - ¢r r . Within TDDFT, its time Fourier-transform ( )P ω, ¢;r r  is given by: 

 3 3

0 0 xc
( ) ( ) ( ) ( ) ( )P d d f Pω χ ω χ ω ω ω, ¢; = , ¢; + ¢¢ ¢¢¢ , ¢¢; ¢¢, ¢¢¢; ¢¢¢, ¢; ,Ú Úr r r r r r r r r r r r  (1) 

where 
0
( )χ ω, ¢;r r  is the independent-particle response function obtained within the Kohn–Sham (KS) 

scheme, and 
xc
( )f ω, ¢;r r  is the time Fourier-transform of the exchange-correlation (xc) kernel 

 xc

xc

( )
( )

( )

V t
f t t

n t

d ;
, ¢; - ¢ = .

d ¢; ¢

r

r r

r

 (2) 

 Equation (1) looks relatively easy for numerical implementation, since it is a product of matrices 

whose indices are single space variables. This must be contrasted with the calculations carried out within 

many-body (MB) theory, where the solution of the Bethe–Salpeter equation implies matrices whose 

indices are pairs of space variables. The main obstacle to its application in realistic calculations is the 

poor knowledge of the xc kernel 
xc
( )f ω, ¢;r r  of real systems. The most widely used approximation is the 

Adiabatic Local-Density Approximation (ALDA, or TDLDA) [21], where the static xc kernel of the 

homogeneous electron gas with the local density is used at nonzero frequencies (see Section 2.1). Such 

an approximation, although surprisingly successful in atoms, molecules and small clusters [21], fails to 

give a quantitative description of the optical properties of solids (see, in particular, Ref. [12] for Si). 

 A good quantitative description of the spectra of solids is instead obtained within MB theory, although 

at the expense of a huge computational effort. According to it, the irreducible polarizability is given by 

[22] 

 IQP(1 2) (1 2) δ (1 2)P P P, = , + , ,  (3) 

where 

 IQP (1 2) (1 2) (2 1)P iG G, = - , ,  (4) 
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is calculated within the independent-quasiparticle (independent-QP) approximation, and dP(1,2) ac-

counts for the interactions among QPs: 

 xc
(3 4)

(1 2) (345678) (1 3) (4 1) (5 7) (8 6) (7 8 2)
(5 6)

P i d G G G G
G

Σ
Γ

d ,
d , = - , , , , , ; .

d ,Ú  (5) 

 Here (1 2)G ,  is the one-particle Green’s function, 1 (as well as 2, 3, etc) indicates space, time and spin 

coordinates 1 1 1
t σ, ,r  altogether, 

xc
S  is the exchange-correlation (xc) self-energy, and (7 8 2)Γ , ;  is the 

vertex function, which can be obtained solving the equation: 

 xc

0

(1 2)
(1 2 3) (1 2 3) (4567) (4 6) (7 5) (6 7 3)

(4 5)
d G G

G

Σ
Γ Γ Γ

d ,
, ; = , ; + , , , ; ,

d ,Ú  (6) 

with 

 
0
(1 2 3) (1 2) (1 3)Γ , ; = d , d , . (7) 

 One can solve Eq. (6) by defining the four-variable kernel (1 2 3 4)Ω , ; , : 

 xc
(1 2)

(1 2 3 4) (56) (5 3) (4 6)
(5 6)

d G G
G

Σ
Ω

d ,
, ; , = , , ;

d ,Ú  (8) 

then Γ  is obtained by inverting 1 Ω-  in (6), and finally one finds for dP: 

 1

0
(1 2) (345678) (1 3) (4 1) (3 4 5 6) [1 ] (5 6 7 8) (7 8 2)P i d G G Ω Ω Γ

-

d , = - , , , ; , - , ; , , ; .Ú  (9) 

 Ab-initio calculations of this type are carried out solving a Bethe–Salpeter equation equivalent to (6), 

using the GW approximation for 
xc

S : 

 
xc
(1 2) (1 2) (1 2) ,iG W, = , ,S  (10) 

(W(1, 2) is the screened Coulomb interaction), and approximating its functional derivative with respect to 

G as 

 xc
(1 2)

(1 3) (2 4) (1 2)
(3 4)

i W
G

dS ,
= d , d , , ,

d ,
 (11) 

that is, by neglecting /G W Gd d  in calculating the functional derivative in (11). 

 An additional approximation is to neglect dynamical effects both in the self-energy and in W, which 

cancel each other almost completely [23]. Calculations carried out since 1998 by a few groups along 

these lines [2–9] have yielded spectra in quantitative agreement with experiments for many systems. 

However, they are computationally very demanding because one has to invert the four-variable kernel 

1 Ω- . 

 In the present work we cast the many-body (MB) linear-response theory in a form similar to the 

TDDFT linear response. To this aim, we equate the TDDFT Eq. (1) to the MB Eq. (3): 

 0 0 xc IQP IQP IQP xcP f P P P P P f Pχ χ= + = + d = + .�  (12) 

 Here all quantities are matrices with single-variable indices, as P(1, 2) and dP(1, 2); the last equality 

defines the MB analogue, 
xc
f� , of the DFT xc kernel 

xc
f . It is worth noticing that, while P is the same in 

both approaches, the RPA approximations 
0

χ , obtained within the independent-particle Kohn–Sham 

scheme, and IQPP , obtained within the MB independent-QP approximation, are different. As a matter of 

fact, KS energies and wavefunctions enter 
0

χ , while QP energies and wavefunctions enter IQPP . As a 

consequence, also 
xc
f  and 

xc
f�  are different. 
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xc
f� can be found in terms of dP from Eq. (12), by inverting IQPP  and P: 

 1 1

xc IQPf P PP�
- -

= d . (13) 

This is the very definition of the MB analogue of the xc kernel of TDDFT. By expressing dP as P– IQPP , 

Eq. (13) is easily seen to be equivalent to the form 

 1 1

xc IQPf P P�
- -

= - . (14) 

 Similar work has been carried out by Streitenberger [24] in the context of the homogeneous electron 

gas. The use of  
xc
f�  allows to calculate the polarization similarly to the case of TDDFT, according to: 

 1 1

0 xc 0 IQP xc IQP(1 ) (1 )P f P f Pχ χ �
- -

= - = - , (15) 

where the first equality is derived within TDDFT and the second within MB theory. 

 The problem is that 
xc
f�  itself is defined in (13) in terms of the (unknown) polarization P. However, 

Eq. (13) allows us to make approximations on 
xc
f� , which is, in a sense, a small quantity. It is small since 

it accounts for the electron–hole interaction, whose effects are somehow minor in semiconductors: their 

experimental spectra (which include its effects), indeed, are qualitatively similar to those calculated 

within the independent-QP approximation (which do not include them). By exploiting the fact that 
xc
f�  is 

small, we can approximate it, as given by (13), to first order in W: 

 1 (1) 1

xc IQP IQPf P P P�
�

- -

, (16) 

where (1)
P  is the expansion of Eq. (9) to first order in Ω , that is by approximating 1(1 )Ω

-

-  with 1 

therein. As a result, 
xc
f�  can be calculated by avoiding the inversion of the four-variable kernel (1 )Ω- , 

that is the most computationally demanding part of the excitonic calculations. This approximation can be 

improved in a systematic way, by inserting higher-order terms both in Pd  and P [14]. We will show 

below that the first term, Eq. (16), already yields spectra in good agreement with experiments. 

 Equation (16) is the most important result of this approach [13, 14] and coincides with that derived, 

starting from different assumptions in Ref. [15, 17]. It allows to calculate the irreducible polarizability 

as: 

 (1) 1 1

IQP IQP(1 )P P P P
- -

= - . (17) 

 This must be contrasted with the result obtained by simply expanding P to first order in Ω  in Eq. (3): 

 (1)

IQPP P P� + . (18) 

 Equations (17) and (18) coincide to first order in (1)
P , but are different when higher-order terms are 

considered. Which of them is a better approximation can be decided only by comparing their results with 

experiments; however, it may be noticed soon that Eq. (17) may describe the formation of bound exciton 

states at the energies where the denominator vanishes, while Eq. (18) cannot. Extensive work carried out 

in the last three years has shown that Eq. (17) is definitely better than Eq. (18) [13–15]. 

 Applying the usual approximations (10) and (11) for the self energy and for its functional derivative, 

we obtain for (1)
P : 

 (1) (1 2) (34) (1 3) (4 1) (3 4) (3 2) (2 4)P d G G W G G, = , , , , , .Ú  (19) 

 It can be calculated from QP wavefunctions and the screened interaction. We neglect, as usual, dy-

namical effects on the Green’s functions and on the screened interaction. Since we are here interested in 
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bulk crystals, we evaluate its space and time Fourier transform; after cumbersome, but straightforward 

algebra, we find: 

 
(1) ( ) ( )
( ) | |cv c v

cc vv cv c v

B B
P vv W c c

E i E i
ω

ω δ ω δ

¢ ¢

¢ ¢ ¢ ¢

- - + ¢Ï È
+ , + ; = · Ò¢ ¢ ¢Ì Í- + + -ÎÓ

Â
q G q G

q G q G  

 
( )

| |v c

c v

B
vc W v c

E iω δ

¢ ¢

¢ ¢

+ ¢ ˘
- · Ò¢ ¢ ˙- + ˚

q G
 

           
( ) ( )

| |vc v c

cv c v

B B
cc W v v

E i E iω δ ω δ

¢ ¢

¢ ¢

- - + ¢È
+ · Ò¢ ¢Í+ - - +Î

q G q G
 

 
( )

| | ,c v

c v

B
cv W c v

E iω δ

¢ ¢

¢ ¢

+ ¢ ˘¸
- · Ò¢ ¢ ˝˙+ - ˚˛

q G
 (20) 

where G  and ¢G  are reciprocal-lattice vectors, q  is restricted to the first Brillouin zone, v and v ′ label 

filled states, while c and c ′ label empty states. We have defined 

 3 3

1 2 1 2 1 2 2 2
*| | *( ) ( ) ( ) ( ) ( )

v v c c
vv W c c d d Wψ ψ ψ ψ

¢ ¢

· Ò = ,¢ ¢ Ú Úr r r r r r r r  (21) 

and 

 3( ) *( ) e ( )i

cv c v
B d xψ ψ= .Ú

kx
k x x  (22) 

1 2
( )W ,r r  is the statically screened Coulomb interaction, and the Bloch wavevectors k  are embodied in  

c, v, etc. 

 Equation (20) can be evaluated using the LDA wavefunctions, which well approximate QP ones [25]. 
(1)

P , 
xc
f�  and IQPP  are matrices indexed by G  and ¢G , whose products and inversions can be evaluated 

numerically. 

 Once we have calculated the irreducible polarizability ( )P ω+ , + ;¢q G q G , we get the microscopic 

dielectric function 1 vPε = - , and its macroscopic component 
M

ε  [26] which describes optical spectra: 

 
1

0
0 0

1
( ) lim

( ( ))
M

q
ε ω

ε ω
-

Æ
= , ¢=

= .

,q
G G

 (23) 

2.1 Other approximated methods 

So far we have described a way to approximate the exchange and correlation kernel within a perturbative 

Many–Body approach. Actually, simpler approximations are nowadays largely in use, especially in the 

chemistry community, based on the so called Adiabatic Local Density Approximation (ALDA). It is in 

fact well known that one of the most used and successful scheme for calculating ground state properties 

of complex systems within DFT is the Local Density Approximation, that is based on the replacement of 

the (unknown) exact exchange and correlation energy 
xc

E  of a system of interacting electrons with the 

functional form of the exchange and correlation energy of an homogenous electron gas (heg) of density 

n(r ): 

 heg

xc xc[ ] d ( ) ( ( ))E n n nε= .Ú r r r  (24) 

 The LDA approximation is known to work very well even in systems far from being homogenous, and 

is at the basis of the huge success DFT has had in the last decades. It is hence natural to try to apply the 
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same scheme also in the case of Time-Dependent Density Functional Theory, by approximating the ker-

nel 
xc
( )f r ω, ¢,r  by the ω  independent functional derivative of the LDA exchange-correlation potential: 

 
LDA

xc

xc

( ( ) )
( ) ( )

( )

V n
f

n

d ,
, ¢ = d - ¢ .

d

r r

r r r r

r

 (25) 

Many calculations have been performed within the ALDA scheme, and some successes have been ob-

tained [27]. Unfortunately, the successful applications are limited to finite systems (atoms, molecules, 

small clusters), whereas no good agreement with experiments is found for infinite systems (bulks, sur-

faces, and so on). The reason for that was found in the fact that the full TDDFT kernel 
xc

v f-  accounts, 

through to the term v (bare Coulomb interaction), of the local field effects, that are very important  

in clusters (since clusters are highly non-homogeneous systems, being described as matter surrounded  

by a lot of vacuum). The term v alone is often able to correct most of the discrepancies found between 

RPA-LDA and experiments in clusters, and in some cases a static and local 
xc
f  kernel (as the LDA one) 

is able to account for the remaining excitonic effects. On the other hand, in bulks and surfaces local 

fields effects are not very important, hence the details of the exact 
xc
f  may become essential. In partico-

lar, the long range tail of 
xc
f  should be proportional to 2

1/q-  for small q [18]. This observation was at the 

basis of a very interesting approximation for 
xc
f  for infinite system, known as RORO kernel: this ap-

proximated kernel, based on the comparison between the exact TDDFT one and the BSE one, consists of 

a contribution arising from the energy shift between the DFT-LDA and GW eigenvalues, and a second 

one which describes the electron hole interaction. Absorbing the first, positive contribution in an energy 

shift of 
0

χ  (that is, starting from IQPP , built up using GW eigenvalues), part of the excitonic effects can be 

obtained using a static, long range kernel 2

xc
( ) | |f δ α, ¢, , = - / +¢

G G
q G G q G  [18]. The constant (energy 

independent) α  depends on the material considered and there is no simple recipe to calculate it. For 

semiconductors with weak excitonic effects it has been shown [19] that α  is related to the inverse dielec-

tric function: 

 1
4 615 0 213α ε

-

•

= . - . , (26) 

but this formula does not work in case of bound excitons. 
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Fig. 1 Single particle approach (LDA-RPA), single quasi-particle approach (GW-RPA) and two-

quasiparticle approach (BSE) calculations for the dielectric function of LiF. Experimental data from [30] 

are also shown. 
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Fig. 2 Dielectric function of LiF calculated within the three TDDFT-based approaches, and comparison 

with experiment [30]. 

3 Results 

As already mentioned, LiF is a prototype system for bound excitons since it presents a strong excitonic 

peak at 12.9 eV, with a binding energy of 1.4 eV. Some theoretical studies about the optical properties of 

LiF with the inclusion of excitonic effects have already appeared in the literature [14, 28, 29]. We show 

in Fig. 1 the absorption spectrum of LiF within the independent single particle approaches (DFT-RPA 

and GW-RPA): the DFT calculation gives, as usual, a redshifted spectrum when compared to the ex-

periment. The GW spectrum, obtained within a single particle scheme using GW eigenenergies, shifts 

the spectrum towards high energies without improving the agreement. The Bethe–Salpeter approach, 

instead, well reproduces the bound exciton below the gap and also the spectrum at higher energies, thus 

confirming to be the state of the art technique for a proper description of optical properties with the in-

clusion of excitonic effects. 

 In order to test the validity of the approximated TDDFT approaches described in the previous section, 

we have now to apply the three schemes described (
xc
f  from MBPT, from ALDA and 2

xc
f qα= - / ) to the 

calculation of the dielectric function of LiF and compare the results with the experiments. This is done in 

Fig. 2. The ALDA spectrum is almost identical to the LDA-RPA ones, thus showing the inadequacy of 

such approximation in infinite systems. On the other hand, the 2
qα- /  (calculated for a ‘best’ 5 5α = . ) 

reproduces the bound exciton at 12.9 eV but not the higher energy part of the spectrum. Just the MBPT-

TDDFT approach (Eq. (20)) is able to reproduce, in the full energy range, the dielectric function of LiF, 

thus confirming a-posteriori the validity of the approximations done. 

4 Conclusions 

In conclusion, we discuss a method for calculating the polarizability within MB theory, which retains the 

computational simplicity of TDDFT. Calculations carried out for LiF yield very good agreement with the 

experimental spectrum. On the other hand, simple approximations for the exchange and correlation ker-

nel, based on the ALDA approach, shows no improvement with respect to the RPA. Finally, the use of 

the simplified static kernel 2
qα- /  allows, for one choice of the parameter α, a good representation of the 

excitonic peak but not of the remaining part of the spectrum. 
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