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We calculate the momentum distribution of the Fermi-liquid phase of the homogeneous two-dimensional
electron gas. We show that close to the Fermi surface, the momentum distribution of a finite system with N
electrons approaches its thermodynamic limit slowly, with leading-order corrections scaling as N−1/4. These
corrections dominate the extrapolation of the renormalization factor Z and the single-particle effective mass m�

to the infinite system size. We show how convergence can be improved using analytical corrections. In the
range 1�rs�10, we get a lower renormalization factor Z and a higher effective mass m��m compared to the
perturbative random-phase approximation values.
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The Fermi-liquid theory of Landau1 postulates a one-to-
one mapping of low-energy excitations of an interacting
quantum system with that of an ideal Fermi gas via the dis-
tribution function of quasiparticles of momentum k. The re-
sulting energy functional has been successfully applied to
describe equilibrium and transport properties of quantum
Fermi liquids: the most prominent are the electron gas and
liquid 3He.2,3 However, quantitative microscopic calculations
of its basic ingredients, the renormalization factor Z, and the
effective mass m� remain challenging.

In this Rapid Communication, we calculate these param-
eters for the two-dimensional electron gas �2DEG� using
quantum Monte Carlo �QMC� in the region 1�rs�10,
where rs= ��naB

2�−1/2 is the Wigner-Seitz density parameter,
n is the density, and aB=�2 / �me2� is the Bohr radius. Kwon
et al.4 made an attempt to determine the Fermi-liquid param-
eters of the two-dimensional electron gas using QMC, with
results that differ from calculations based on other
methods.5–7 In particular, Kwon et al.4 found an effective
mass smaller than the bare mass, e.g., m��m at rs=1. How-
ever, QMC calculations suffer from severe finite-size effects
since typical system sizes are limited to N�100 electrons.
Here we show that there is an extremely slow convergence of
the effective mass and the renormalization factor to their
thermodynamic limit values, with leading-order corrections
scaling as N−1/4. A correct extrapolation to the infinite-sized
system leads to important qualitative and quantitative differ-
ences compared to previous calculations4,7 which had as-
sumed a �1 /N� extrapolation. We further use the knowledge
of the analytical properties of the ground-state wave
function8 to analytically estimate dominant and subdominant
size effects.

Microscopically, the existence and characteristics of the
Fermi surface of interacting fermions are directly related to
the renormalization factor Z at the Fermi surface.9 For a
normal Fermi liquid, one expects a sharp discontinuity in the
momentum distribution nk at the Fermi surface for each spin,

nk = Zk��kF − �k�� + gk, �1�

where kF is the Fermi wave vector, ��x� is a step function,
and gk is a continuous function of momentum k. One expects
a linear excitation spectrum �k=�2kF�k−kF� /m� close to the
Fermi surface at �k�=kF, with m� as the effective mass. The
goal is to determine the properties in the N→� limits based
on calculations on cells of N particles with discrete values of
nk

N and Zk
N. A microscopic construction of the Landau energy

functional is based on considering energy eigenstates which
are adiabatically connected to the excited states of the non-
interacting Fermi gas.7 The effective mass is then explicitly
given in terms of the energy difference �k=Ek

N+1− �E0
N+	�

between single-particle excitations of energy Ek
N+1 and mo-

mentum k and the N-particle ground state of energy E0
N,

where 	 is the chemical potential.
QMC methods provide the most accurate calculations of

the ground-state energy of the electron gas. However, fermi-
onic QMC calculations suffer from two major drawbacks:
the fixed node approximation and finite-size errors. For a
normal Fermi liquid, the most precise results are obtained
using a generalized Slater-Jastrow form for the trial wave
function,10


T � D�R�e−U�R�, �2�

where R indicates a dependence on all particle coordinates.
Antisymmetry is assured by a Slater determinant D�R�
=detij eikj·qi�R� of plane waves inside the Fermi sphere �k j�
�kF using dressed quasiparticle coordinates qi�R� to account
for many-body backflow effects; whereas the many-body Ja-
strow potential U�R� is symmetric with respect to particle
exchange and accounts for the singularities in the interpar-
ticle potential at the coincidence points. Projector Monte
Carlo methods can be used to improve the wave function
stochastically. Many ground-state properties have been suc-
cessfully calculated using QMC; however, the situation is
less clear concerning excited-state properties.7

The Slater determinant of many-body wave function �2�
directly connects the ground state of the interacting system
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with the noninteracting one: low-lying excitations are ob-
tained by changing the “occupation numbers” of the plane
waves. The energy is therefore a functional of the occupation
numbers as postulated within the Landau Fermi theory.3

Whereas this energy functional certainly exists for any finite
system, its existence in the thermodynamic limit is non-
trivial; a necessary condition is limN→� ZkF

N �0: a central is-
sue of this Rapid Communication.

We have performed variational quantum Monte Carlo
�VMC� and diffusion Monte Carlo �DMC� calculations of the
2DEG; the electrons interact with a 1 /r potential and with a
positive background charge. We have used a Slater-Jastrow
backflow �SJ-BF� wave functions with an analytical form for
both the Jastrow and backflow potentials;11 all potentials are
split in short- and long-range contributions as described in
Ref. 12. For N=58 electrons, the DMC ground-state energies
obtained are �3mRy lower than previous calculations using
numerically optimized forms.13 Excited states were formed
by adding or subtracting orbitals in the determinant; the
backflow and Jastrow forms11 are independent of the precise
occupation of the Slater determinant. Since the trial function
had no free parameters, we can study size effects without
reoptimizing parameters for different system sizes.

First, we calculated the momentum distribution as ex-
plained in Ref. 14. However, for systems in periodic bound-
ary conditions, the momentum distribution is only given at
discrete values k=2��nx̂+mŷ� /L, where n and m are inte-
gers and x̂ and ŷ are the unit vectors in the x and y directions,
respectively. Using twisted boundary conditions with twist
angles ��xx̂+�yŷ�2� /L for the trial wave functions, we can
obtain a momentum distribution for all values of k by vary-
ing the twist angle. In the limit of an infinite-sized system,
the Slater determinant of our trial wave function approaches
a sharp Fermi surface, occupying only wave vectors �k�
�kF. For finite systems, the sharp behavior of the occupation
numbers inside the Slater determinant is best described by
working in the grand-canonical ensemble using only orbitals
inside the Fermi sphere for a given twist angle.8,15 As shown
in Fig. 1, the renormalization factor quantifying the jump in
the momentum distribution at kF can be precisely read off for

any finite system. However, strong size effects around the
Fermi surface are still evident.

We can analyze size effects directly using the analytical
form of the SJ-BF trial wave function. The momentum dis-
tribution is obtained by displacing one particle r j a distance
r,

nk
N = �e−ik·r−UN

D�R:r j + r�
D�R� � , �3�

where �¯� denotes averaging over �
T�R��2 and over a uni-
form distribution for r; the change in the Jastrow potential in
terms of its Fourier transform uq is

UN =
1

V
	
q�0

uq
eiq·rj�−q − 1�
eiq·r − 1� , �4�

where �q=	 je
iq·rj. As described in Ref. 8, the most important

finite-size effects can be understood as an integration error
by analytical continuation of the finite-size �periodic� wave
function to an infinite system where the estimator in Eq. �3�
would contain the following change in the Jastrow factor:

UN→� →� d2q

�2��2uq
eiq·rj�−q − 1�
eiq·r − 1� . �5�

The finite-size correction is then dominated by the nonana-
lyticity of the integrand at q=0,

U� − UN  �
−�/L

�/L d2q

�2��2uq
eiq·rj�−q − 1�
eiq·r − 1� ,

and we can calculate the leading-order size corrections nk
�nk

�−nk
N by expanding nk

� 
Eq. �3�� up to the second order in
U�−UN. Neglecting mode-coupling terms, we get

nk  �
−�/L

�/L d2q

�2��2�q�
nk+q
N − nk

N�

+ �
−�/L

�/L d2q

�2��2�
−�/L

�/L d2q�

�2��2uquq�
1 − S�q� − S�q���

� 
nk
N + nk+q+q�

N − nk+q
N − nk+q�

N � , �6�

where

�q� = �uq
1 − S�q�� − nuq
2S�q�� . �7�

Equation �6� expresses size corrections in terms of the long-
wavelength limits of the Jastrow potential uq and of the
structure factor S�q�. In the limit q→0, we have

2nuq  − 1 + 
1 + �2nvq/�q��1/2,

S�q�  
2nuq + 1/S0�q��−1, �8�

where vq=2�e2 /q, �q=�2q2 /2m, and S0�q� is the structure
factor of the noninteracting Fermi gas.

As the momentum distribution of a Fermi liquid 
Eq. �1��
is smooth everywhere away from the Fermi surface, leading-
order corrections are restricted to a small region around kF,
where we can write
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FIG. 1. �Color online� The momentum distribution of N=162
unpolarized electrons using grand-canonical twist-average VMC for
densities rs=1–10, analytically corrected for size effects around kF.
The inset compares the uncorrected QMC data for different system
sizes between N=26 and N=162 with the size-corrected distribution
at rs=10 �“N→�”�.
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nk  ZkF

N �
−�/L

�/L d2q

�2��2�q�
��kF − �k + q�� − ��kF − k�� .

�9�

In Fig. 1 we show the size-corrected momentum distribution
for different densities between rs=1 and rs=10 using Eq. �9�.
Close to kF, size effects lead to important qualitative and
quantitative changes.

The renormalization factor Z can be read off directly from
the jump of the momentum distribution at the Fermi surface,
ZkF

N =nkF−�
N −nkF+�

N , and its size-corrected value may therefore
be read off directly from Fig. 1. For a precise evaluation of Z
in the thermodynamic limit, we have studied the extrapola-
tion separately. From Eq. �6�, one can show that size correc-
tions of Z can be written as

ZkF

�  ZkF

N e−�N, �N = �
−�/L

�/L d2q

�2��2�q� , �10�

which includes the main subleading-order corrections. Using
analytical forms �7� and �8�, the leading-order corrections are

�N  ��rs
2

4N
�−1/4

for N → � . �11�

Asymptotic form �10� with Eq. �11� shows that actual QMC
calculations with typically N�102 electrons suffer from very
strong size effects. Obscured by the intrinsic noise of QMC
calculations, pure numerical analysis of the data might sug-
gest convergence in the thermodynamic limit to values very
different from the exact value.

In Fig. 2 we compare the bare data for rs=1 and rs=10
with their size-corrected values. Whereas the bare data are in
reasonable agreement with previous QMC results,7,14 a nu-
merical extrapolation of the uncorrected data strongly de-
pends on assumptions on the asymptotic scaling form, as size
corrections overwhelmingly dominate the calculation of Z. In
order to go beyond leading order, we have directly used Eq.
�10� together with asymptotic forms �7� and �8� to correct
our bare data analytically. As can be seen from the figure, the

size-corrected values drastically reduce size effects, as ex-
pected. More important, in contrast to the uncorrected data,
the extrapolation of the size-corrected values is not sensitive
to assumptions on the remaining corrections for densities rs
�3. Approaching the high-density region rs�1, the thermo-
dynamic limit extrapolation becomes more difficult since the
asymptotic expansion is singular in the limit rs→0. In Table
I we have summarized our results for the renormalization
factor.

Size corrections of the momentum distribution induce cor-
rections to the total kinetic energy which can be shown to
coincide with the two-dimensional analog of Ref. 8. In two
dimensions, the leading-order size corrections of the kinetic
and potential energies per particle scale as N−5/4 in the
Fermi-liquid phase. We show VMC and DMC energies of the
size-extrapolated values of the energy per particle in Table I.

Since this class of wave functions has Z�0, the single-
particle excitation spectrum should be dominated by quasi-
particle excitations with an effective mass m�. We have cal-
culated the effective mass by adding an electron with
momentum p with �p��kF to the ground state. The effective
mass of an excited state is determined assuming an expan-
sion of the self-energy in powers of p−kF, leading to
2m�p /�2= p2−kF

2 +2kF�m /m�−1��p−kF� in the vicinity of
kF.

Again, the proper treatment of size effects is essential to
extrapolate to the thermodynamic limit. The additional elec-
tron at momentum p will induce size corrections in the mo-
mentum distribution which can be estimated as before. The
resulting additional finite-size error in the total kinetic energy
Tp

N due to the excitation of momentum p is then given by

Tp
N =

�2p2

2m
Zp

N
e−�N − 1� . �12�

We see that the size corrections of the effective mass are
intrinsically related to those of the renormalization factor Z,
leading to a similar asymptotic scaling law N−1/4. Potential-
energy corrections are independent of p in leading order and
Eq. �12� dominates finite-size corrections for m /m�. Note
that the renormalization factor can also be obtained from
analyzing the finite-size error of effective-mass calculations
without explicit calculations of the momentum distribution.
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FIG. 2. �Color online� The renormalization factor Z for rs=10
estimated from the finite-size momentum distribution as a function
of the inverse number of electrons and the corresponding size-
corrected values. Dashed lines illustrate the size corrections of order
N−1/4 �N−1� for the uncorrected �corrected� data. The inset shows the
corresponding values at rs=1.

TABLE I. Energies per particle �in Ry�, EVMC, and EDMC, the
renormalization factor Z, and the effective mass m� /m extrapolated
to the thermodynamic limit 
both within VMC and from perturba-
tive RPA calculations �Ref. 5��. Values in �� are standard errors in
the last decimal place.

rs 1 3 5 10

EVMC −0.4179�2� −0.4223�1� −0.2975�1� −0.16952�1�
EDMC −0.4206�2� −0.4241�1� −0.2991�1� −0.17070�1�
ZVMC 0.62�4� 0.34�3� 0.22�2� 0.090�4�
m� /mVMC 1.26�7� 1.39�8� 1.54�7� 1.72�9�
ZRPA 0.66 0.44 0.34 0.24

m� /mRPA 1.02 1.12 1.16 1.21
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From Fig. 3, we see that size effects play a similar impor-
tant role in determining m� as they do in determining Z. In
particular, for high densities, size effects qualitatively change
the conclusion in previous calculations.4 Whereas, in agree-
ment with Ref. 4 all bare data indicate an effective mass
smaller than the bare mass for N�100, in the thermody-
namic limit the effective mass is increased, as predicted by
perturbative random-phase approximation �RPA�
calculations.5,6

Calculations based on many-body perturbation theory go-

ing beyond the perturbative RPA approximation have been
suggested. However, based on different approximations,
these predictions may lead to an enhancement or depression
of Z �or the effective mass�5,6 and it is difficult to estimate
reliably the validity of the underlying approximations. Our
VMC results for Z are always below the corresponding val-
ues of the perturbative RPA calculations, whereas we predict
a higher effective mass m� /m. Our calculations therefore
support improved RPA calculations based on many-body
local-field theory including charge- and spin-density fluctua-
tions as proposed in Ref. 6.

We have shown that long-range Jastrow potentials lead to
strong size effects for the Fermi-liquid parameters. It is in-
teresting to note, however, that modification of the long-
range properties can also induce a vanishing renormalization
factor Z implying the possibility of describing non-Fermi-
liquid behavior within SJ-BF.16 As our finite-size analysis
shows, this is realized, for example, in the case of two-
dimensional charges with a logarithmic interaction at long
range �1 /q2 in reciprocal space�.

This research was supported by NSF under Grant No.
DMR04-04853, IDRIS Computers, and the ACI “Désordre et
Interactions Coulombiennes” and facilitated by the Project
de Collaboration CNRS/UIUC. M.H. thanks S. Moroni,
C. Pierleoni, R. Chitra, and A. Pasturel for discussions.

1 L. D. Landau, Sov. Phys. JETP 30, 1058 �1956�.
2 D. Pines and P. Nozières, The Theory of Quantum Liquids

�Addison-Wesley, Reading, MA, 1989�.
3 G. Baym and C. Pethick, Landau Fermi Liquid Theory �Wiley-

VCH, Weinheim, 2004�.
4 Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B 50,

1684 �1994�; 53, 7376 �1996�.
5 H.-J. Schulze, P. Schuck, and N. Van Giai, Phys. Rev. B 61,

8026 �2000�.
6 R. Asgari, B. Davoudi, M. Polini, G. F. Giuliani, M. P. Tosi, and

G. Vignale, Phys. Rev. B 71, 045323 �2005�.
7 G. F. Giuliani and G. Vignale, Quantum Theory of the Electron

Liquid �Cambridge University Press, Cambridge, 2005�.
8 S. Chiesa, D. M. Ceperley, R. M. Martin, and M. Holzmann,

Phys. Rev. Lett. 97, 076404 �2006�.
9 V. M. Galursky and A. B. Migdal, Sov. Phys. JETP 7, 96 �1958�;

J. M. Luttinger, Phys. Rev. 119, 1153 �1960�.
10 M. Holzmann, B. Bernu, and D. M. Ceperley, Phys. Rev. B 74,

104510 �2006�.
11 M. Holzmann, D. M. Ceperley, C. Pierleoni, and K. Esler, Phys.

Rev. E 68, 046707 �2003�.
12 V. Natoli and D. M. Ceperley, J. Comput. Phys. 117, 171 �1995�;

M. Holzmann and B. Bernu, ibid. 206, 111 �2005�.
13 Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B 48,

12037 �1993�.
14 B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 �1989�.
15 C. Lin, F. H. Zong, and D. M. Ceperley, Phys. Rev. E 64,

016702 �2001�.
16 M. Capello, F. Becca, S. Yunoki, and S. Sorella, Phys. Rev. B

73, 245116 �2006�; F. Krüger and J. Zaanen, ibid. 78, 035104
�2008�.

0.00 0.01 0.02 0.03 0.04

0.6

0.7

0.8

1 / N

m
/
m
*

QMC

QMC corrected

FIG. 3. �Color online� The inverse effective mass m /m� for rs

=10 as a function of N−1 together with the corresponding size-
corrected values. Dashed lines illustrate the expected size
corrections.
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