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Excitonic Effects on the Silicon Plasmon Resonance
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We present an ab initio calculation of the electron energy loss spectrum of silicon including local-field,
self-energy, and excitonic effects. When self-energy corrections are added to the standard random phase
approximation (RPA) the line shape of the plasmon resonance worsens. The electron-hole interaction
cancels this correction and improves the result both compared to the RPA and to the self-energy one,
yielding very good agreement between theory and experiment provided that the mixing of interband
transitions of both positive and negative frequencies is included.
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In a classical description of an extended system of
charged particles, as in Drude’s model, a plasmon is a
collective excitation of the electrons which oscillate on a
background of positively charged ions. Plasmons can be
measured, for example, as resonances in electron energy
loss spectra (EELS) at characteristic frequencies where the
transfer of energy to the system is favored. However,
the interpretation of EELS is not simple, because besides
the structures associated to collective excitations there
are those due to electron-hole interband transitions, or
even to a coupled superposition of both. Nevertheless,
if there are no significantly strong interband transitions
in the plasmon energy region, the plasmon concept still
retains its validity as a damped collective excitation.
Moreover, looking at excitations with long wavelength
(small transferred momentum q), the collective character
of the modes dominates.

The classical free-electron model gives the relation
Ep � �4pne2�m�1�2 between the plasmon energy Ep and
the average electron density n of the system. Indeed this
relation gives a first indication for the position of plasmon
resonances and can even be a good approximation in
materials like simple metals at low electron density. In
other materials, however, it yields only a rough estimate.
In fact, it is crucial to include information about the band
structure of the solid. This affects both the peak positions
and the line shape of plasmon resonances. We therefore
have to calculate the energy loss function (ELF) of the
system, a quantity that completely characterizes the EELS.
It is defined as 2Im�´21�q, v��, where ´ is the dielectric
function. Essentially, the peaks of the ELF corresponding
to collective excitations are zeros of the real part of the
dielectric function. As a first step, the calculation of the
ELF can be done in the independent-particle scheme of
the random phase approximation (RPA), where the so
called exchange-correlation effects (the effects due to
the many-body interactions among the electrons of the
system) are still neglected, but the band structure of the
solid is now taken into account.

If one has to deal with inhomogeneous electron
systems also the so called local-field (LF) effects should
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be considered. They are related to the fluctuation of the
polarization of the system on the atomic scale. Thus the
response to an external perturbation includes, besides
the wavelengths of the perturbation, also wavelengths of
the order of the lattice spacing, that is, Bragg diffracted
components. The LF effects are described by the off-
diagonal elements of the dielectric matrix ´G,G0�q, v�,
where G is a reciprocal lattice vector. The LF effects
become stronger as the momentum transfer q increases,
since then the wavelength of the excitation becomes
smaller and one samples the local inhomogeneities of
the electronic system under consideration.

The RPA with local-field effects is often a good approxi-
mation for the description of the EELS spectra. For silicon,
to our knowledge the first work giving the RPA ELF by a
band structure calculation is the one of Louie et al. [1] who
indeed found good agreement with experiment concerning
the position of the plasmon resonance. Later Daling, van
Haeringen, and Farid [2] calculated the plasmon-resonance
line shape in silicon at q ! 0 including both local-field
effects, and exchange-correlation corrections in the frame-
work of the time-dependent density-functional theory in
the adiabatic local-density approximation (TD-LDA) [3].
This is an approximate way to include many-particle ef-
fects based on ingredients taken from the homogeneous
electron gas. This approach is today widely used, as,
for example, in a recent work on diamond by Waidmann
et al. [4]. It is however a common finding that the in-
clusion of exchange-correlation corrections in the scheme
of TD-LDA beyond the RPA approximation has a small
effect [4] or even worsens [2] the agreement with experi-
ment. The authors of Ref. [4] have instead pointed out the
need to include the many-body effects more properly and,
in particular, to treat excitonic effects explicitly.

Today it is hence a challenge to consider alternative,
more precise ways to include many-body effects. A good
level of approximation could be Hedin’s GW approxima-
tion [5], in the framework of many-body quantum field
theory. Using this approach one can calculate electron
addition and removal (quasiparticle) energies through
self-energy corrections to the density-functional theory
© 2001 The American Physical Society
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local-density approximation (DFT-LDA) Kohn-Sham
(KS) eigenvalues, taking hence properly into account the
electron-electron interaction. When the response functions
are then constructed using these eigenvalues instead of
the DFT-LDA Kohn-Sham ones (GW approach), the
loss function might be considerably altered. In fact,
an estimate of this effect can be found in the work of
Gavrilenko and Bechstedt [6], where the authors add GW
corrections to the TD-LDA result using a simplified GW
scheme, and it will certainly be interesting to verify the
effect of full GW corrections to the ELF. Nevertheless,
even when doing so, the effects related to the interaction
between an excited electron and its associated hole (the
so called excitonic effects) are still neglected, which is an
inconsistent approximation.

In order to take into account also the excitonic effects,
we have to consider vertex corrections to the GW expres-
sions for the polarizability. In the calculation of Im�´�,
hence, for example, in absorption spectra, from a large
number of publications electron-hole interaction effects are
known to be significant, even for silicon [7–9], and we can
expect that this should also influence the EELS.

The aim of this work is to calculate the plasmon reso-
nance in the EELS spectrum of silicon including local-
field effects and many-body, up to excitonic, effects. The
scheme we use is based on the one described by one of us
[8,10], however going beyond an important approximation
made in that and similar [9,11] works. Recently Caliebe
et al. [12], still using the original scheme [9], have per-
formed an excitonic calculation of the dynamic structure
factor of diamond and LiF (measured in inelastic x-ray
scattering spectroscopy experiments), which is directly re-
lated to the ELF 2��´21�q, v��. That work, however,
deals with q fi 0, while here we are interested in the limit
q ! 0, that is, in the response of the system to a longitu-
dinal perturbation with vanishing momentum transfer. In
this range the loss function is dominated by the collec-
tive excitations of the electron system, i.e., the plasmons.
Moreover, in this limit of large wavelength the local-field
effects are smaller and do not mask the many-body effects
we are interested in. In fact, as mentioned above, it turns
out that we have to make an important extension to the
approach used in Refs. [8] and [12], in order to describe
these effects correctly. Therefore we briefly summarize
the scheme of Ref. [8], concentrating on the modifications
which are necessary in the case of the calculation of EELS
spectra.

We compute the macroscopic dielectric function ´ from
the two-particle correlation function S, which is directly
related to the polarizability x of the system. The two-
particle correlation function is calculated solving the
Bethe-Salpeter equation through the introduction of an
effective excitonic Hamiltonian containing unperturbed
quasiparticle transition energies and the matrix ele-
ments of an interaction kernel J taken between pairs of
occupied/empty quasiparticle states �y, c�. The excitonic
Hamiltonian is diagonalized; its eigenvalues El are the
transition energies of the system. The eigenvectors Ayc

l

mix the independent-particle transitions y ! c of the
RPA (in fact, Ayc

l would be a d function in RPA without
LF). To be precise, the general form of the excitonic
Hamiltonian is

H �

µ
R C

2C� 2R�

∂
, (1)

where R � Ry and 2R� are, respectively, the resonant
part, containing the y ! c transitions of positive fre-
quency, and the antiresonant part, containing the c ! y

transitions of negative frequency. C � CT and 2C�, the
off-diagonal parts, are the coupling elements between
transitions of positive and negative frequencies. The
coupling terms are in general smaller than the resonant
and antiresonant terms (the influence of the coupling terms
on exciton energies has been discussed in Ref. [13]). In
fact, they can be neglected in the calculation of the optical
properties (at least of silicon), as was done in Ref. [8].
On the contrary, and this is the main difference to the
approach used for all ab initio calculations of absorption
spectra up to now, in the case of the calculation of the
energy loss function we cannot neglect them. This is of
course intimately linked to the importance of the real part
of ´ which, via the Kramers-Kronig relation, contains
transitions of positive and negative frequencies.

This fact is illustrated in Fig. 1 which shows the ELF
calculated at a reduced number of k points (Nk � 32) in
the Brillouin zone (BZ). There is a significant difference
between the solid (inclusion of the coupling) and the dotted
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FIG. 1. Silicon, ELF calculated with only 32 k-points in the
BZ: solid line, coupling fully included; dotted line, coupling
neglected; dashed line, coupling included in first-order pertur-
bation theory.
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curve (neglect of the coupling). Hence, in the present case,
we have to diagonalize the full non-Hermitian excitonic
Hamiltonian, a task that is not easily accomplished even
on the more powerful computers today.

Since the coupling terms are, however, much smaller
than the resonant and antiresonant terms, we can try to
include them in first-order perturbation theory, considering
as the zero-order Hamiltonian H�0� and as perturbation
H�1� the operators

H�0� �

µ
R 0
0 2R�

∂
, H�1� �

µ
0 C

2C� 0

∂
. (2)

The result we obtain is the one shown by the dashed curve
in Fig. 1. With respect to the solid curve where the cou-
pling is accounted for to all orders, there is a relatively
small residual error (i.e., an error much smaller than the
effects we are studying), which is acceptable. It should be
pointed out that, although the non-Hermitian Hamiltonian
could, in principle, have imaginary eigenvalues, this is not
the case here. In particular, first-order perturbation theory
does not change the eigenvalues at all, but affects only the
eigenvectors. In fact, as in the case of the absorption spec-
tra, even the shifts of the peak positions are due to changes
in the eigenvectors, and not to shifts of transition energies.

The ground state DFT-LDA calculation [14] was per-
formed using norm-conserving pseudopotentials [15], an
energy cutoff of 18 Ry, and 256 special MP k-points [16]
in the BZ. In this way we obtain the KS electronic struc-
ture which is used to calculate the RPA spectra and which
also form the input for the further calculations. Next we
calculate the GW corrections to the KS band structure fol-
lowing the approach of Ref. [17]. The quite smooth GW
corrections calculated at the special MP k-points are inter-
polated to obtain the GW corrections at the shifted 256 MP
k-points needed for the calculation of the macroscopic di-
electric function. The GW band structure is then used to
calculate the GW spectra and serves as an input for the
excitonic ELF calculation. For the latter we use Ny � 4
valence bands and Nc � 13 conduction bands, which is
much more than the 4 1 3 bands needed for an optical
spectrum, since the ELF spreads over a larger energy range.
With these parameters convergence is achieved within 5%,
the main error remaining on the peak height.

The results are shown in Fig. 2. The dots are the electron
energy loss experimental data of Stiebling [18]. The most
visible feature in the case of the EELS spectrum of silicon
at q close to 0 is the volume plasmon resonance located
at about 16.8 eV. The dashed line is the RPA calculation,
including local-field effects. We remark, as already stated
in the previous works [1,2], the overall satisfactory agree-
ment of the RPA curve with respect to the experiment, es-
pecially concerning the position of the plasmon resonance.
The plasmon resonance line shape, however, exhibits sev-
eral secondary structures stemming from band structure ef-
fects, which cannot be seen in the experiment, and it is too
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FIG. 2. Silicon, EELS spectrum: dots, experimental points by
Stiebling (Ref. [18]); dashed line: RPA; dot-dashed line: GW
corrections are added to the KS eigenvalues; solid line: GW
corrections plus excitonic effects; dotted line: same as the solid
line but neglecting the coupling. All the calculated results in-
clude local-field effects.

broad on the high energy side. The GW result, including
local-field effects (dot-dashed curve), shows a large shift
to higher energies. In fact, we have to realize that when
we begin to include many-body effects via GW, hence still
neglecting the vertex (electron-hole) corrections, the result
clearly worsens with respect to the RPA one, concerning
the position of the plasmon resonance, while also the line
shape does not improve. This result nicely illustrates the
usual difficulty to establish the “best” level of approxima-
tion in the framework of many-body perturbation theory.

Finally, the continuous curve has been obtained by in-
cluding also the effects of the electron-hole interaction.
The result clearly improves: we see that both the position
of the plasmon resonance and the line shape are now in
better agreement with experiment, with respect to the GW
calculation, but also with respect to the RPA one. In fact,
the remaining discrepancy with experiment is of the same
order of magnitude as the error bar which we have to as-
sume due to the first-order perturbation treatment of the
coupling, and the convergence of the calculation.

As pointed out above, the behavior of the real part of ´

dominates the EELS. In Fig. 3 we have plotted the real
and imaginary parts of ´ in the region of the plasmon
resonance. We see that the main difference between the
RPA (dashed curve), GW (dot-dashed curve), and excitonic
(solid curve) calculations is directly related to the shift of
the zero of ℜ�´�.

We stress the fact that the big improvement has been
achieved only through the inclusion of the coupling terms,
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FIG. 3. Silicon, real ´1 and imaginary ´2 parts of the dielectric
function: solid lines, excitonic calculation; dot-dashed lines, GW
approach; dashed lines, RPA calculation.

which are generally completely omitted in the absorption
spectra. The result we obtain if we neglect the coupling
terms is the one shown by the dotted curve in Fig. 2, which
represents an excitonic calculation with only the resonant
and antiresonant terms. Clearly this result does not show
the effect of the electron-hole interaction as it does not
improve at all with respect to GW.

Finally, it would be interesting to compare at least
qualitatively the results of the excitonic calculation to
the TD-LDA ones found in literature [2,6,19,]. This is,
however, not obvious: when exchange-correlation effects
are included, in Ref. [2] a shift towards higher energies
and a slight reduction of the broadening were obtained,
while Ref. [6], on the contrary, shows a shift towards
lower energies and a slight increase of the broadening. In
Ref. [19] one of us has found an intermediate result, i.e., a
shift towards lower energies and a slight reduction of the
broadening. This last result indicates that also TD-LDA
can yield an improvement with respect to RPA, although
the improvement on the line shape is more evident in
the present excitonic calculation than in all the published
TD-LDA results.
In conclusion, we have calculated the EELS spectrum
of silicon including local-field effects, GW corrections, and
excitonic effects. We find that the inclusion of excitonic ef-
fects improves the results with respect to both the RPA, and
more drastically, with respect to the GW calculations. The
correct result can be obtained only by taking into account
the coupling between transitions at positive and negative
frequency, which are generally neglected in calculations
of optical spectra.
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