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Beyond time-dependent exact exchange:
The need for long-range correlation

Fabien Brunevala�

European Theoretical Spectroscopy Facility (ETSF), Laboratoire des Solides Irradiés, UMR 7642,
CNRS-CEA/DSM, École Polytechnique, F-91128 Palaiseau, France

Francesco Sottile
European Theoretical Spectroscopy Facility (ETSF), Laboratoire des Solides Irradiés, UMR 7642,
CNRS-CEA/DSM, École Polytechnique, F-91128 Palaiseau, France and Donostia International Physics
Center (DIPC), 20018 Donostia/San Sebastian, Spain

Valerio Olevano
European Theoretical Spectroscopy Facility (ETSF), Laboratoire des Solides Irradiés, UMR 7642,
CNRS-CEA/DSM, École Polytechniuqe, F-91128 Palaiseau, France and Laboratoire d’Études des Propriétés
Électroniques des Solides, UPR 11, CNRS, F-38042 Grenoble, France

Lucia Reining
European Theoretical Spectroscopy Facility (ETSF), Laboratoire des Solides Irradiés, UMR 7642,
CNRS-CEA/DSM, École Polytechnique, F-91128 Palaiseau, France

�Received 23 November 2005; accepted 21 February 2006; published online 14 April 2006�

In the description of the interaction between electrons beyond the classical Hartree picture, bare
exchange often yields a leading contribution. Here we discuss its effect on optical spectra of solids,
comparing three different frameworks: time-dependent Hartree-Fock, a recently introduced
combined density-functional and Green’s function approaches applied to the bare exchange
self-energy, and time-dependent exact exchange within time-dependent density-functional theory
�TD-EXX�. We show that these three approximations give rise to identical excitonic effects in
solids; these effects are drastically overestimated for semiconductors. They are partially
compensated by the usual overestimation of the quasiparticle band gap within Hartree-Fock. The
physics that lacks in these approaches can be formulated as screening. We show that the introduction
of screening in TD-EXX indeed leads to a formulation that is equivalent to previously proposed
functionals derived from many-body perturbation theory. It can be simulated by reducing the
long-range part of the Coulomb interaction: this produces absorption spectra of semiconductors in
good agreement with experiment. © 2006 American Institute of Physics. �DOI: 10.1063/1.2186996�
I. INTRODUCTION

Density-functional theory1 �DFT� is one of the most
widely used approaches for the calculation of material prop-
erties that are determined by the electronic ground state.
Since existing approximations for the in principle exact but
in practice unknown exchange-correlation contribution are
sometimes not sufficient to obtain the desired accuracy or
even qualitative behavior, the search for better functionals is
a continuous effort. The same is true concerning neutral elec-
tronic excitations that are accessible observables of time-
dependent DFT �TD-DFT�.2 The failure of most existing ap-
proximations for extended systems is in this case even more
significant than in the case of the ground state.3 In both
cases, it has been recognized that one may have to accept an
additional complication of the functionals in order to get
reliable results.

One way to go is orbital-dependent functionals. A local
Kohn-Sham4 �KS� exchange-correlation �xc� potential �xc

can be obtained from a given nonlocal self-energy via the
�linearized� Sham-Schlüter equation.5 This optimized effec-
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tive potential6 �OEP� contains much of the important physics
of the underlying self-energy. The most prominent approxi-
mation along this path is the so-called “exact exchange”
�EXX�.7 The EXX potential �EXX is obtained as the local
counterpart for the nonlocal Fock operator, which is usually
referred to as the “exchange” term. This potential is of
course completely different from the original Fock operator:
the OEP is local and constructed with KS wave functions,
whereas the exchange operator is nonlocal and constructed
with Hartree-Fock �HF� wave functions. It has been found
empirically that EXX eigenvalue band gaps are closer to ex-
perimental quasiparticle band gaps than are local-density ap-
proximation �LDA� or HF ones. The agreement is very good
for simple semiconductors.8 However, an increasing under-
estimation for materials with wider band gap has been
noticed.9 Although EXX contains important effects �it is de-
void of self-interaction,7 as HF is�, it is not meant to simulate
the effects of Hartree-Fock. In particular, there is no simple
interpretation for the KS eigenvalue band gap, no equivalent
to the Koopmans theorem. Since KS band gaps are a priori
not meant to reproduce experiment, the band gap agreement
© 2006 American Institute of Physics13-1
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may arise to a large extent from error cancellations �though
still be useful�.

Instead, in the case of electronic excitations, the situation
is different. Time-dependent Hartree-Fock �TD-HF� can be
understood as an approximation to many-body perturbation
theory �MBPT�, obtained from the latter by neglecting cor-
relation. TD-EXX, on the other side, is a straightforward
approximation of TD-DFT. Both MBPT and TD-DFT should
in principle yield the same �correct� dynamical polarizability,
that can be measured, e.g., by optical absorption.

HF and, more recently, EXX have been used quite fre-
quently in calculations of real solids,10,11 sometimes aug-
mented with approximate correlation functionals, such as
LDA.12 Much fewer examples exist instead for their time-
dependent counterpart; TD-HF has been carried out for large
band gap materials,13 and, to our knowledge, only the ab-
sorption spectrum of silicon has been calculated within
TD-EXX.14 Intuitively, one would of course not choose
TD-HF to calculate, say, the absorption of silicon, since the
strong screening in this material can be expected to drasti-
cally influence the electron-hole interaction. On the other
hand, with EXX KS band gaps comparing so favorably to
experiment with respect to their HF counterparts, one may
hope for a similar improvement when going from TD-HF to
TD-EXX. In fact, it was suggested in Ref. 14 that the TD-
EXX absorption spectrum of bulk silicon favorably com-
pares to experiment. It is therefore worthwhile to elucidate
the links between the two approaches and discuss differences
in various ingredients as well as in the expected and calcu-
lated results. This is the main aim of the present work.

For the sake of clarity and completeness, we add to this
comparison a third method, that is to some extent intermedi-
ate. This recently introduced approach, called � /G in the
following, is in fact a combination of MBPT and the density-

15

TABLE I. Schematic overview of the different approaches and correspond
exchange-only case.

Green’s function
�TD-�DFT

GEXX�r1t1 ,r2t2�

Linear Sham-Schlüter S
Potential vEXX gen
Eigenvalues �EXX gen

Noninteracting response function
used in polarizability equation �0

EXX

Linear Sham-Schlüter S
Kernel of the Dyson equation
consisting of:

KTD-EXX

Variation of Hartree potential v
Quasiparticle shift f �1�,lin �=FEXX

B of Ref. 14� f �1�

Electron-hole interaction f �2�,lin �=FEXX
A of Ref. 14� f �2�=�0

HF−1

Name of the approaches TD-EXX Non

For solids, see papers Kim and Gürlinga B

aReference 14.
bReference 15.
cReference 13.
functional concept. As will be discussed below in the
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exchange-only approximation, it is situated on the same level
as HF concerning the quasiparticle band gap, but close to
TD-EXX concerning the electron-hole attraction.

The three methods used in the present work are different
for some aspects, but tightly linked for others. For a better
understanding, we summarize in Table I the differences and
similarities of the three frameworks. The meaning of the no-
tations and the acronyms will be made clear along this paper.

Our mathematical comparison and numerical results �ob-
tained for the example of bulk silicon� clearly show that in
the case of solids all three methods are equivalent. This im-
plies that TD-EXX in its present form is not suitable for the
description of absorption spectra of semiconductors. We dis-
cuss hence the need for screening of the exchange interac-
tion, and, more precisely, for the screening of the long-range
components of it. By introducing the missing terms, we
make the link with recently introduced and successfully used
functionals derived from many-body perturbation theory,15–19

and we discuss which are the most crucially needed correc-
tions.

II. ELECTRON-HOLE INTERACTION
IN THE QUASIPARTICLE
AND IN THE DENSITY-FUNCTIONAL FRAMEWORK

It is useful to first recapitulate the main features of vari-
ous approaches that will be compared. For the sake of clarity,
we simplify the problem and do not distinguish between KS
and HF single-particle wave functions in the following. In
the numerical examples, we use LDA wave functions
throughout, and furthermore, all the band structures �LDA,
HF, and EXX� differ solely by a rigid shift of the band gap.
These assumptions are very reasonable for bulk silicon20,21

�of course, the situation would be rather different in finite
22

bservables, approximations, and acronyms. Quantities are specified for the

� /G
GHF�r1t1 ,r2t2�

MBPT
GHF�r1t1 ,r2t2�

Schlüter
not used �x �x

not used �HF �HF

�0
HF 4�0

HF

Schlüter
D-DFT K�/G 4K�1,2 ;1� ,2��
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HFvGHFGHF�0
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work. We often employ the widely spread many-body short-
hand notation 1= �r1 , t1� and omit to specify spin explicitly.

The neutral excitations of materials are described by the
polarizability or density-density linear response function
��r ,r� , t− t��. This quantity expresses the linear response of
the electronic density to variations of an external potential
�Uext�r� , t��,

��r,r�,t − t�� = � ���r,t�
�Uext�r�,t��

�
Uext=0

. �1�

Beside the response of independent particles �0�r ,r� , t− t��,
the full density-density response function further contains
contributions stemming from the self-consistently induced
potentials. Independent particle and interacting particle re-
sponse functions are linked via a Dyson-type polarizability
equation, symbolically

� = �0 + �0�� , �2�

where the kernel � first of all is due to a self-consistently
induced Hartree potential

�H
ind�r,t� =� dr�dt����H�r,t�/���r�,t������r�,t�� .

The induced Hartree potential contributes hence to the
kernel � with the simple term ���H�r , t� /���r� , t���
=��r−r����t− t��.

A similar variation has to be added for the
exchange-correlation potential. In the TD-DFT framework,
this leads to the exchange-correlation kernel fxc�r ,r� , t− t��
= ���xc�r , t� /���r� , t���, and Eq. �2� is an integral equation
for ��r ,r� , t− t��,

��1,2� = �0
KS�1,2� +� d3d4�0

KS�1,3�KTD−DFT�3,4���4,2� .

�3�

Here, KTD-DFT�3,4�=��3,4�+ fxc�3,4�. ��1,2�=��r1−r2���t1

− t2� stands for the instantaneous bare Coulomb interaction
and �0

KS is the Kohn-Sham independent-particle response
function.

In the MBPT framework, the equivalent variation has to
be calculated for the nonlocal exchange-correlation self-
energy �. As a consequence, it is not possible to obtain
straightforwardly a closed Dyson-type equation for the two-
point density response function. This remains also true in the
HF approximation, where � reduces to the—still nonlocal—
Fock operator �x. Moreover, the exchange term has a simple
dependence on one-particle Green’s function G�r1t ,r2t+�
�not so simple on the density ��r��. Therefore, as in the gen-
eral case, the derivation of a closed equation for the response
function of the Hartree-Fock system leads to the introduction
of four-point polarizabilities 4�0 and 4�,3

4��1,2;1�,2�� = 4�0�1,2;1�,2��

+� d3d4d5d64�0�1,3;1�,4�

�4K�3,6;4,5�4��5,2;6,2�� . �4�
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�Contracting indices to 4��1,2 ;1 ,2� give back the usual
��1,2�.� This equation is the Bethe-Salpeter equation.3,23

For the Hartree-Fock case, the kernel 4K is24

4K�3,6;4,5� = 2��3,4���5,6���3,5�

− ��3,6���4,5���3,4� . �5�

The first � of the kernel stems from the variation of the
Hartree potential �with a factor of 2 for singlet excitons�, and
the second �, from the variation ���x /�G� of the Fock ex-
change operator �x.

4�0, the four-point independent-
quasiparticle polarizability, is constructed here using HF ei-
genvalues, 4�0

HF �see last column of Table I�. Note that
beyond bare exchange, in most applications of the Bethe-
Salpeter equation a statically screened Coulomb interaction
W replaces � in the second term.3 This term gives rise to a
direct screened electron-hole attraction instead of the un-
screened one in the case of HF.

Recently, Bruneval et al.15 introduced a general formu-
lation that avoids the solution of the four-point Bethe-
Salpeter equation. This approach �named � /G here� is based
on the use of the density-functional concept within Hedin’s
equation of MBPT.25 Of interest here, it yields an explicit
formula for the two-point polarizability � that contains all
exchange-correlation effects via the density-variation of the
self-energy, �� /��, and via the explicit use of an
independent-quasiparticle �QP� polarizability. The approach
is between TD-DFT �because it leads to a two-point polariz-
ability equation such as Eq. �3�� and MBPT �because the QP,
instead of the KS, independent-particle response appears�.
Using the GW approximation for � �Ref. 25� and some fur-
ther straightforward approximations, this approach leads to
previously proposed equation for � that yields spectra in ex-
cellent agreement with the spectra calculated from Bethe-
Salpeter equation, and consequently, with experimental
spectra.16–19 This equation is similar to Eq. �4�, but recast
into a two-point form,

��1,2� = �0�1,2� +� d3d4�0�1,3�K�/G�3,4���4,2� , �6�

where the two-point kernel K�/G reads

K�/G�1,2� ª ��1,2� + f �2��1,2� �7�

=��1,2� − i� d3d4d5�0
−1�13�G�34�G�53�

���45�
���2�

.

�8�

For the present work, it is interesting to choose the Fock
operator as an approximation for the self-energy in �� /��,
and consistently, to use the HF independent-particle response
function �0

HF for �0 in the polarizability equation �second
column of Table I�. The two-point kernel K�/G of the Hartree-
Fock problem becomes, following Ref. 15,

K�/G�1,2� � ��1,2�

+� d3d4d5d6�0
HF−1�13�GHF�34�GHF�53�

� ��45�GHF�46�GHF�65��HF−1�62� , �9�
0
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where GHF�1,2� is HF Green’s function and hence �x

= iGHF� the Fock operator. Here, as in Ref. 15, we have used
the approximation �G /��=−G��G−1 /���G�G�0

−1G.
One may wonder whether Eq. �6� using this approximate

� /G kernel is indeed able to reproduce TD-HF. Figure 1
compares the TD-HF �continuous curve� and � /G �dashed
curve� calculated26 absorption spectra for bulk silicon. Of
course, the results are far from any experiment: the HF direct
band gap of silicon is 8.92 eV �see the independent-HF-QP
result, dot-dashed curve obtained from Im��0��, more than
twice the experimental QP direct band gap of 3.40 eV.27

Also the electron-hole attraction is drastically overestimated
due to the absence of screening, and a strongly bound exci-
ton is formed inside the HF-QP band gap. Finally, QP and
excitonic errors cancel to a large extent; the absorption spec-
trum falls in an energy region that is closer to the experimen-
tal one �circles�,28 but the line shape is of course completely
wrong. This is to be expected and is not the point here.
Instead, it is noteworthy to point out that the TD-HF �Eqs.
�4� and �5�� and � /G �Eqs. �6� and �9�� results are almost
indistinguishable, as it was the case in previous findings
when correlation beyond Hartree-Fock was taken into
account18 and the effective interaction was therefore much
weaker. This means that the kernel f �2� in Eq. �9� simulates
well the TD-HF bare electron-hole attraction.

Let us now come to a fully TD-DFT formulation of the
problem �see the first column of Table I�. This can also easily
be written starting from the equations of Ref. 15: indeed, that
work showed that a differentiation of the time-dependent
Sham-Schlüter condition29 �that the TD-DFT and the MBPT
time-dependent densities correspond� with respect to the
density yields the TD-DFT polarizability equation,

��1,2� = �0
KS�1,2�

+� d2d3�0
KS�1,3�KTD-DFT�3,4���4,2� , �10�

KS
in which now the KS independent-particle response �0 ap-
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pears, and the corresponding kernel reads KTD-DFT=K�/G

+ ��0
KS−1−�0

−1�. In other words, the TD-DFT kernel has, with
respect to the � /G one, an additional contribution f �1�

ª�0
KS−1−�0

−1. If inserted in a Dyson-type polarizability
equation, f �1� transforms the KS independent-particle re-
sponse �0

KS into the corresponding QP independent-particle
response �0. It essentially opens the band gap from the KS to
the QP one.15,30

When applied to the exchange-only case, one obtains
hence KTD-DFT=�+ f �1�+ f �2� where f �1� has the role to open
the band gap to the HF one, and the bare electron-hole at-
traction f �2� is the kernel of Eq. �7� �approximated, e.g., by
Eq. �9��. We call this approach the “nonlinearized TD-EXX
approach,” as opposed to the standard TD-EXX approach
that will be discussed in the next section.

It is quite obvious to see that Eqs. �10� and �6� yield
identical results, as we have also confirmed numerically
�without displaying the result here�. This leads to an impor-
tant conclusion of this section, namely, nonlinearized TD-
EXX reproduces TD-HF. The band gap difference between
EXX and HF is canceled in the optical spectrum by the con-
tribution f �1� to the kernel, whereas the effects of the
electron-hole attractions ��x /�G and f �2� are extremely
close.

III. TIME-DEPENDENT HARTREE-FOCK
AND TIME-DEPENDENT EXACT EXCHANGE

Let us now make the link to what is usually called “TD-
EXX.” The starting point is the linearized Sham-Schlüter
equation,29

i� d1vEXX�1��0
EXX�1,2�

=� d1d3� d4GEXX�1,3��x�3,4�GEXX�4,2� , �11�

FIG. 1. Imaginary part of the macro-
scopic dielectric function of bulk sili-
con. Continuous curve: TD-HF result,
dashed line: � /G result �see text�
from Ref. 15, dot-dashed curve:
independent-HF-QP result �see text�,
and circles: experiment �Ref. 25�.
where only EXX KS quantities are used to build response
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functions and the Fock operator �x= iGEXX� �the solution of
the static version of this equation would yield the static
OEP potential �EXX�. The functional derivative with respect
to the density of �EXX has a contribution that stems from
the derivative of �x �this is explicitly shown in Appendix
A�,

f �2�,lin�1,2� =� d3d4d5d6�0
EXX−1�1,3�GEXX�3,4�GEXX�5,3�

� v�4,5�GEXX�4,6�GEXX�6,5��0
EXX−1�6,2� .

�12�

This term is very similar to f �2� in Eq. �9�. Since we do not
distinguish single-particle wave functions, the only differ-
ence lies in the eigenvalues used to build all Green’s func-

tions, and �0.

best case �met for few transitions�, f is a good approxi-
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Actually, it turns out that this difference is not signifi-
cant. Figure 2 shows a comparison of the � /G spectrum cal-
culated using f �2� and f �2�,lin, respectively �continuous line
and open circles�. The reason for this perfect agreement is a
strong cancellation between energy denominators in the in-
verse response functions and two Green’s functions in terms
of the type GG�0

−1.
It is now important to notice that f �2�,lin is nothing else

but the electron-hole attraction term of TD-EXX. This term
corresponds precisely to the terms HX

1 and HX
2 in Ref. 31 �see

Appendix B for a detailed derivation�. Hence, we find a
strongly overbound exciton from the TD-EXX electron-hole
attraction.

The rest of the terms that stem from the derivative of
Eq. �11� is the linearized version of f �1�. It reads �see

FIG. 2. Imaginary part of the macro-
scopic dielectric function of bulk sili-
con. Continuous curve: � /G result �see
text� using f �2�, open circles: � /G re-
sult using f �2�,lin �this corresponds to
TD-EXX �see text��, and dot-dashed
curve: using f �2�,lin and the modified
Coulomb interaction of Ref. 14.
Appendix A�
f �1�,lin�1,2� =� d3d4d5d6�0
EXX−1�1,3�GEXX�3,6�GEXX�6,4� � ��x�4,5� − ��4,5�vEXX�4��GEXX�5,3��0

EXX−1�6,2�

+� d3d4d5d6�0
EXX−1�1,3�GEXX�6,3�GEXX�3,4� � ��x�4,5� − ��4,5�vEXX�4��GEXX�5,6��0

EXX−1�6,2� . �13�
As shown in Appendix B, this expression �again assuming
that KS and HF wave functions are equal� corresponds to the
terms HX

3 and HX
4 of Ref. 31.

f �1� has the difficult task to shift the whole independent-
particle spectrum above the HF band gap, and it turns out
that it is more delicate to linearize this contribution than f �2�.
It is clear that the linearization of f �1� cannot, by miracle,
cancel the overestimate of the exciton binding in f �2�: in the

�1�,lin
mation to f �1� and rigidly shifts the whole spectra conserving
the shape �and therefore the bound exciton�; otherwise, f �1�,lin

is numerically instable and gives rise to scattered spectra.32

Therefore, in the following calculations, we always use the
nonlinearized version f �1� �instead of f �1�,lin�. For the same
reason, it is not astonishing that Kim and Görling have found
a “collapse” of the silicon absorption spectrum.14 The au-
thors have solved the problem by cutting off the long-range

�small q� part of the Coulomb interaction. In fact, this pro-
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cedure leads to drastic changes in the spectrum: we have
repeated their calculation by introducing the same cutoff in
f �2�. Now, instead of the strongly bound exciton we find a
line shape in good agreement with experiment, as can be
seen by the dot-dashed curve in Fig. 2. �f �1� has not been
modified; therefore the spectrum stays in the HF energy re-
gion.� In the same way, the reduction of the long-range Cou-
lomb interaction in f �1� translates into a shift of the spectrum
towards the experimental position.

This result may seem rather ad hoc. However, it can be
understood and used to improve the approach, as we will
discuss in the following section.

IV. CORRELATION CONTRIBUTIONS

Figure 3 shows the diagonal of the static inverse dielec-
tric matrix �G,G

−1 �q� of bulk silicon as a function of �q+G�,
calculated in the random phase approximation �RPA�. The
vertical line denotes the border of the Brillouin zone, up to
which Kim and Görling14 have chosen to set the Coulomb
interaction to zero. The step function that one obtains in this
way can be seen as a first reasonable approximation for the
full screening curve. In other words, the modified Coulomb
interaction is an approximation to the screened Coulomb in-
teraction W: it compensates for the lack of correlation.
Hence, the impressively good result of Kim and Görling and
in Fig. 2 can be explained: the new, screened f �2� is just an
approximation to the electron-hole attraction term derived in
Refs. 16 and 17 from the Bethe-Salpeter equation, which it
reproduces in the same way as the unscreened version repro-
duces TD-HF. The same applies in principle to f �1�.

It should be pointed out that the good results obtained
from the more sophisticated approaches16,17 such as � /G
�Ref. 15� rely in practice on a number of approximations that
are commonly made in the Bethe-Salpeter approach from
which they are derived. In particular, QP eigenvalues are
calculated within the GW approximation �including dynami-

cal effects�, whereas W for the electron-hole screening is

Downloaded 17 Oct 2006 to 129.104.38.4. Redistribution subject to A
taken static. Although these are much less crude approxima-
tions than the cutoff used above for TD-EXX, the search for
a perfectly rigorous, but still efficiently working approach is
not yet completed.

At present, however, one may be with no doubts satisfied
with the precision and reliability of the screened
approaches.16–19 Nevertheless, it is interesting to investigate
the role of correlation further, since the cutoff approach of
Kim and Görling gives precious hints: the screening of the
long-range �small q� part of � is seen to have drastic effects.
This is consistent with other studies of the long-range con-
tribution of the exchange-correlation kernel in bulk materials
�see, e.g., Refs. 33 and 34�.

Without considering these findings, one might hope to
introduce correlation in another, more standard way, namely,
by adding LDA correlation to EXX as it is quite frequently
done for the ground state potential.12 Figure 4 shows the
result of a TD-�EXX+cLDA� calculation �continuous curve�
as compared to the TD-EXX result �stars�: the LDA correla-
tion does not give rise to any visible changes. �Note that in
both cases f �1�,lin has been replaced by the corresponding f �1�,
for clarity. In other words, only the effect of correlation in
f �2� is tested.�

The adiabatic LDA kernel is in fact short ranged, and
cannot suppress the overbound exciton stemming from long-
range contributions. Instead, as can be seen from the cutoff
result, any model �−1 that reasonably screens the long-range
contributions can do the job; for illustration, we also show in
Fig. 4 the result obtained replacing � by � / 	�0
 in f �2�,lin,
where 	�0
 is taken to be an average dielectric constant of six
for silicon. In spite of the extreme simplicity of the treatment
of correlation, the result is again satisfactory �note that, as in
Fig. 2, the unscreened f �1� is used; hence, the spectrum re-
sults too high in energy�. This leaves the hope that, starting
from some screened version of TD-EXX and along the lines
of Refs. 16–19 and 35, it is possible to find approximations

FIG. 3. Diagonal of the static inverse
RPA dielectric function of bulk silicon.
The vertical line denotes the border of
the Brillouin zone.
to TDDFT, less rigorous than TD-EXX, but exempt from its
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severe shortcomings concerning the description of bulk ma-
terials, and that the method is still numerically advantageous
with respect to the solution of the Bethe-Salpeter equation.
Hybrid functionals such as the ones discussed in Ref. 36 may
be seen as a possibility in this context.

V. CONCLUSIONS

A time-dependent OEP procedure constructs TD-DFT
kernels that yield the same time-dependent density as a given
approximation to the self-energy, via a time-dependent
Sham-Schlüter equation. Apart from a linearization, this re-
lation is exact. It is therefore not surprising that a careful
time-dependent OEP calculation reproduces the solution of
the Bethe-Salpeter equation, within the corresponding ap-
proximation. The present work verified this agreement for
the case of the Hartree-Fock approximation to the self-
energy. In particular, the nonlinearized and the usual linear-
ized TD-EXX are shown to reproduce the TD-HF calculation
and consequently, fail crudely to describe absorption spectra
of semiconductors, because the electron-hole interaction is
largely overestimated there. We show that TD-EXX gives
rise to a huge bound exciton for bulk silicon. The lineariza-
tion does not cure this shortcoming. The similarity between
TD-HF and TD-EXX can also be noticed in the evaluation of
vertical excitation energies of finite systems.37

Whatever the approach used, Bethe-Salpeter equation,
� /G method, or TD-DFT, the inclusion of the screening of
the exchange operator is evidenced as crucial to give a
proper account for the electron-hole interaction. In particular,
the long-range components of the exchange kernel have to be
reduced. Furthermore, we demonstrate that the details of the
screening do not matter much: two very different and crude
models �a cutoff as used by Kim and Görling or a uniformly
reduced Coulomb interaction � /6� allow us to equally pro-
duce realistic absorption spectra of silicon.

The hope of describing optical absorption spectra of

semiconductors within TD-DFT is well founded. However,
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in the framework of unscreened methods, such as TD-EXX,
there is no chance to get something else than the disastrous
TD-HF results: one has to go beyond TD-EXX. A rigorous
OEP method based on “exact screened exchange” may do the
job. Fortunately, the inclusion of screening within rather
simple approximations, e.g., using an empirically screened
Coulomb interaction, seems to be already sufficient.
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APPENDIX A: DERIVATION OF THE TD-DFT
KERNELS FROM THE LINEARIZED TD-SHAM
SCHLÜTER EQUATION

The present appendix provides the derivation of the lin-
earized TD-EXX kernels from the linearized TD-Sham-
Schlüter equation. The linearized TD-Sham-Schlüter equa-
tion reads

� d3GEXX�1,3�vEXX�3�GEXX�3,1�

=� d3d4GEXX�1,3��x�3,4�GEXX�4,1� . �A1�

When Eq. �A1� is differentiated with respect to the TD den-

FIG. 4. Imaginary part of the macro-
scopic dielectric function of bulk sili-
con. Continuous curve: nonlinearized
TD-�EXX+cLDA� result, stars: non-
linearized TD-EXX result, and dot-
dashed curve: using f �2�,lin and the
modified Coulomb interaction v /6.
sity ��2�, we get
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� d3GEXX�1,3�
�vEXX�3�

���2�
GEXX�3,1�

=� d3d4GEXX�1,3�
��x�3,4�

���2�
GEXX�4,1�

+� d3d4
�GEXX�1,3�

���2�
��x�3,4�

− ��3,4�vEXX�3��GEXX�4,1� +� d3d4GEXX�1,3�

���x�3,4� − ��3,4�vEXX�3��
�GEXX�4,1�

���2�
. �A2�

The linearized exchange operator is simply �x�1,2�
= iGEXX�1,2���1,2�. Therefore, the only quantity needed to
carry on the derivation is the derivative of GEXX with respect
to �. It can be evaluated along the following lines, using
standard functional analysis relations, and introducing the
total KS potential within EXX �KS,

�GEXX�1,2�
���3�

=� d4
�GEXX�1,2�

�vKS�4�
�vKS�4�
���3�

= −� d4d5d6GEXX�1,5�GEXX�6,2�

�
�GEXX

−1 �5,6�
�vKS�4�

�vKS�4�
���3�

=� d4GEXX�1,4�GEXX�4,2��0
EXX−1�4,3� ,

�A3�

where the last line was obtained from the Dyson equation
GEXX

−1 =G0
−1−�KS �G0 standing for free-electron Green’s func-

tion� and from the definition �0
EXX−1=��KS/��.

Finally, by inserting Eq. �A3� into Eq. �A2�, by multi-
plying by �0

EXX�2,5�, and integrating over the variable 2, we
obtain the central equation for the linearized TD-EXX kernel
fEXX,lin=��EXX/��,

� d2d3�0
EXX�1,3�fEXX,lin�3,2��0

EXX�2,5�

=� d3d4GEXX�1,3�GEXX�4,1�v�3,4�GEXX�3,5�

�GEXX�5,4�

− iGEXX�1,5� � d3d4GEXX�5,3�

���x�3,4� − ��3,4�vEXX�3��GEXX�4,1�

− iGEXX�5,1� � d3d4GEXX�1,3�

���x�3,4� − ��3,4�vEXX�3��GEXX�4,5� , �A4�

with �0
EXX=−iGEXXGEXX. The kernel fEXX,lin can be split into

two pieces f �1�,lin and f �2�,lin, the definitions of which stand

respectively in Eqs. �13� and �12�. This partition is natural
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when looking at the analytical form of the terms. It is further
physically driven, since the term f �2�,lin accounts for electron-
hole interaction and the term f �1�,lin for the quasiparticle
shift.15,30

APPENDIX B: LINK TO TD-EXX

This appendix shows that the kernel obtained in the pre-
vious appendix is precisely the EXX kernel of Kim and
Görling.31 For simplification, let us name T�1a�,lin the first
term of �0

EXXf �1�,lin�0
EXX, T�1b�,lin the second one, and T�2�,lin

=�0
EXXf �2�,lin�0

EXX.
We are about to introduce the expression of GEXX in the

previous terms in order to recover all the 16 terms of the
kernel of Kim and Görling. Time-ordered EXX Green’s
function GEXX in frequency domain is

GEXX�r1,r2,	� = �
i


i�r1�
i
*�r2�

	 − �i − i��2f i − 1�
, �B1�

where 
i and �i are the EXX KS wave functions and energies
for index i �that contains also the k point information�. f i is 1
for occupied states and 0 for empty states.

1. Evaluation of T„2…,lin

Let us first proceed with the electron-hole interaction
term T�2�,lin. It reads, after Fourier transform to frequency
domain,

T�2�,lin�r1,r5,	�

=
2

�2��2�
ijkl


i�r1�
 j
*�r1� � d	1

1

�	 + 	1 − �i��	1 − � j�

� 	ik�v�jl

k
*�r5�
l�r5� � d	2

1

�	 + 	2 − �k��	2 − �l�
,

�B2�

as the products in time space become convolutions of fre-
quencies. The factor 2 accounts for spin degeneracy. The
usual Coulomb integrals

	ik�v�jl
 =� dr1dr2
i
*�r1�
k�r1�

1

�r1 − r2�

 j�r2�
l

*�r2�

�B3�

have been introduced and the ±i� factors in the denomina-
tors are still present, but not explicitly written �they are un-
changed with respect to the definition of GEXX�.

The frequency integrals are now calculated by virtue of
the residue theorem on a path that encloses either the upper
half-plane or the lower half-plane. Contributions with all
poles in the same half-plane vanish. Consequently, the fre-
quency integrals are

� d	1
1

�	 + 	1 − �i − i��2f i − 1���	1 − � j − i��2f j − 1��

= 2�i
f j − f i

	 − ��i − � j� + i��f j − f i�
. �B4�

�2�,lin
The T term finally reads
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T�2�,lin�r1,r5,	� = − 2�
ijkl

�f j − f i�

i�r1�
 j

*�r1�
	 − ��i − � j� + i��f j − f i�

� 	ik�v�jl
�f l − fk�

�

k

*�r5�
l�r5�
	 − ��k − �l� + i��f l − fk�

. �B5�

This expression for T�2�,lin is equal to the HX
1 and HX

2 terms of
Ref. 31, except that the convergence factors i� are of oppo-
site sign for antiresonant terms. In fact, the present deriva-
tion, starting from time-ordered Green’s functions, yields
time-ordered quantities, whereas the derivation of Kim and
Görling considers causal quantities. When used adequately,
this difference is not relevant in practical applications.

2. Evaluation of T„1a…,lin and T„1b…,lin

Let us now turn to the contribution T�1a�,lin to the linear-
ized TD-EXX kernel. �x is a static approximation for the
self-energy, hence in the frequency domain, T�1a�,lin reads

T�1a�,lin�r1,r5,	� = −
2i

2�
�
ijk
� d	1


i�r1�
i
*�r5�

	 + 	1 − �i − i��2f i − 1�

�

 j�r5�

	1 − � j − i��2f j − 1�
	j��x − vEXX�k


�

k

*�r1�
	1 − �k − i��2fk − 1�

. �B6�

Performing the integration on 	1 thanks to the residue
theorem gives a vanishing contribution if the i, j, and k states
are all occupied or all empty. There are six nonvanishing
terms corresponding to the other cases. We will exemplify
three of them in the following. The three remaining ones are
analogous.

If i and j are occupied and k is empty, let us close the
path of integration in the lower half-plane. The enclosed
poles are the �k− i� that yield the residues

− 2�i
f if j�1 − fk�

�	 − ��i − �k� − i����k − � j�
. �B7�

If i and k are occupied and j is empty, closing the path
analogously in the lower half-plane retains the poles � j − i�
that give the residues

− 2�i
f i�1 − f j�fk

�	 − ��i − � j� − i���� j − �k�
. �B8�

If j and k are occupied and i is empty, this retains poles
located at �i−	− i� with residues

− 2�i
�1 − f i�f j fk

�	 − ��i − � j� − i���	 − ��i − �k� − i��
. �B9�

The three other terms correspond to the case with two empty
states and one occupied state. The path of integration will be
closed in the upper half-plane, in order to retain only the
poles from the occupied states.
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T�1a�,lin finally gives rise to six terms. T�1b�,lin will also
account for six analogous terms. The sum of T�1a�,lin and
T�1b�,lin, if written explicitly, is exactly the terms HX

3 +HX
4 of

Kim and Görling, except once again that the convergence
factors i� are opposite for antiresonant transitions.

This appendix showed that the linearized Sham-Schlüter
equation indeed yields the same TD-DFT kernel, as the one
obtained by Kim and Görling in Ref. 31.
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