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limit q 3 0). We illustrate numerically and analytically how the imaginary part of the
dielectric function and the loss function coincide for finite systems, and how they start
to show differences as the distance between objects in an infinite array is decreased
(which simulates the formation of a solid). We discuss calculations for the model case of
a set of interacting and noninteracting beryllium atoms, as well as for various realistic
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1. Introduction

O ver the past decades we have witnessed a
steady increase in the use of density func-

tional theory (DFT) [1]. This holds not only for
extended and relatively homogeneous systems, for
which the initial, simplest approximations like the
local density approximation (LDA) were originally
designed; DFT is today also widely and success-
fully used to calculate ground-state properties of
inhomogeneous systems and finite structures, like
atoms or molecules, even maintaining the approx-
imations on a relatively simple level. Concerning
electronic excitations, the situation has evolved dif-
ferently. DFT is a static ground-state theory, and
the eigenvalues of the corresponding Kohn–Sham
(KS) equation, or eigenvalue differences, are not
meant to represent electron addition or removal
energies, or transition energies, even when one dis-
regards that approximations have to be made. For
finite systems, eigenvalue differences can neverthe-
less be rather close to excitation energies. In fact, in
the one-electron limit KS eigenvalue differences are
identical to promotion energies. For more electrons,
it is still true that the KS potential is better suited to
describe neutral excitations than, e.g., the Hartree–
Fock, because in KS occupied and unoccupied or-
bitals see the same potential and hence the same
number of electrons [2]. Concerning other types of
excitations, Chong et al. have shown that the orbital
energies of occupied levels of atoms and molecules
can be interpreted as approximate, but rather accu-
rate, relaxed vertical removal energies [3].

One should also mention that in finite systems
the problem of excitations well described by popu-
lating KS states of different symmetry can often be
tackled by calculating total energy differences in a
so-called �-self-consistent-field (�-SCF) scheme
(see, e.g., Ref. [4]). However, the range of applica-
tion of these schemes is limited. The problem can
conceptually be solved by generalizing DFT to a
time-dependent theory [5] (TDDFT). Now, the
time-dependent KS potential can describe the re-
sponse of the system to a time-dependent (as op-
posed to a static, as in DFT) local potential: This is
the response measured in many spectroscopies cre-
ating electronic excitations, like absorption. First
applications of TDDFT concerned finite systems [6],
and were performed in the adiabatic local density
approximation (TDLDA), with encouraging results.
Subsequently, a large number of TDLDA calcula-
tions have been performed for atoms, molecules,

and clusters (see Ref. [7] and references therein).
Although the TDLDA shows shortcomings (e.g., it
does not capture Rydberg series), it is able to de-
scribe a large class of finite systems, and systemat-
ically improves results with respect to the random
phase approximation (RPA) [8], where exchange
and correlation (xc) effects in the response are ne-
glected. However, this statement is not true for
extended systems. In fact, it has been found for
simple semiconductors and insulators that absorp-
tion spectra calculated in TDLDA are generally
very close to RPA ones, and result hence in signif-
icant disagreement with experiment. Note that the
same is not true for electron energy loss spectra,
which are often in reasonable agreement with ex-
periment even on the RPA or TDLDA level.

In view of that situation, in order to obtain a
deeper understanding, and to eventually improve
the existing approximations for TDDFT, it is impor-
tant to elucidate which are the features of finite
versus infinite systems, and of absorption versus
energy loss spectra, that determine such different
behaviors.

As we discuss in this article, two key points for
understanding this question are (i) the fact that
states are localized in small molecules, whereas
electrons are described as extended Bloch states in a
solid, and (ii) the relative importance of long-range
effects in a solid, compared to a finite system. Some
discussion, especially of point (ii), has already been
made (see, e.g., Ref. [7]). Here we analyze these
questions more in detail. Starting from existing re-
sults, we add analytical and numerical calculations
that show how the Coulomb interaction governs
the transition between finite and infinite systems,
and between absorption and energy loss spectra, as
well as the transition between RPA and an im-
proved TDDFT formalism. As a byproduct of our
model calculations, we suggest a way to speed up
the calculation of absorption spectra of molecules in
the supercell scheme. We then give a series of ex-
amples of realistic systems, where the observed
phenomena illustrate our discussions. To stress the
classical origin of many of the effects, we compare to
the outcome of effective medium theory, where
appropriate.

Our article is organized as follows. In Section 2
we present the theoretical framework, adopting a
formulation that puts absorption and loss functions
on the same footing. These spectra are compared,
and their behavior as a function of the distance
between the objects composing the system is dis-
cussed analytically. We also give a brief reminder of
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effective medium theory. Section 3 gives numerical
results for model systems, in particular a model of
interacting or noninteracting beryllium atoms. In
Section 4 we present results of ab initio calculations
for realistic systems: solids, superlattices, nano-
tubes, quantum wires, and clusters. Finally, we end
with conclusions and perspectives. Unless other-
wise indicated, we will use a compact notation for
matrix products [namely in real space, v� � �
dr�v(r1 � r�)�(r�, r2, �) and similarly in reciprocal
space] and Hartree atomic units throughout (i.e.,
e2 � � � me � 1).

2. Theory

Here we give a brief overview of both the ab
initio and the classical effective medium ap-
proaches used to produce and discuss the results in
the next sections.

A. RESPONSE FUNCTIONS IN TDDFT

Although we will not limit our target to infinite
systems, we take the solid-state approach and de-
scribe all equations in reciprocal space. Keep in
mind that we will perform later, whenever we wish
to describe an isolated structure, the limit of the cell
size going to �.1 In this scheme, the microscopic
dielectric function of a periodic system, which re-
lates the total potential of the system to the external
applied one, is given in terms of the bare Coulomb
potential vG(q) and the irreducible polarizability of
the system �̃G,G�(q, �) by

�G,G��q, �	 � �G,G� � vG�q	�̃G,G��q, �	. (1)

Here G stands for a vector of the reciprocal lattice,
and q is a vector in the first Brillouin zone. The
polarization function �̃ includes, in principle, all
many-body effects. However, it is most often eval-
uated within RPA [8], where xc effects in the re-
sponse are neglected. �̃ has then simply the inde-
pendent-particle (IP) form:

�̃�r, r�, �	 � �0�r, r�, �	

� �
ij

� fi � fj	
�i�r	�*j�r	�j�r�	�*i�r�	

� � �ij � i	 . (2)

Here �ij � (
j � 
i), fi are Fermi occupation num-
bers, and (i, j) label the states of energy 
j and 
i

obtained from some equation for one-particle
states. As usual, we take the energies 
i and wave
functions �i(r) to be solutions of the KS equation.

From the microscopic dielectric function, we
have to obtain measurable quantities. In the case of
absorption spectra, one calculates the imaginary
part of the macroscopic dielectric function �M, which,
according to the works of Adler and Wiser [8], can
be obtained through

�M��	 � lim
q30

1

��1�q, �	�G�G��0

. (3)

�M also allows one to obtain electron energy loss
spectra (EELS) for vanishing momentum transfer,
from the loss function �Im{1/�M}.

It is therefore obvious that EELS and absorption
are closely related spectra, both carrying informa-
tion about the electronic response of the system. At
this point it is worth remembering that EELS is
traditionally interpreted as being dominated by col-
lective plasmon excitations, whereas single parti-
cle–hole excitations (essentially joint density-of-
states) control the absorption spectra. This can be
understood easily in the independent particle pic-
ture, since the imaginary part of the Fourier trans-
form of (2) is proportional to 1/�2 ¥v,c ���v�v��c
�

2

�(
c � 
v � �), where v is the velocity operator, and
the sum runs over occupied (valence) and unoccu-
pied (conduction) states �v, �c with energy 
v and

c, respectively. Instead, because �Im{1/�M} �
Im{�M}/(Re{�M}2 � Im{�M}2), the structure in EELS
is mainly given by regions where both the real and
the imaginary part of �M are close to zero, that is,
the classical condition for a collective (plasmon)
mode [9].

Independently of the quality of the states �, the
electronic excitations described by Eq. (2) are re-
stricted to the generation of noninteracting particle–
hole pairs. It is, however, important to recall that
when the off-diagonal elements of �G,G� are prop-
erly accounted for in the matrix inversion (3)—in
other words, when crystal local field effects (LFE)
are taken into account—the formerly independent
transitions do mix, leading to an effective “elec-

1In practice, one will perform the ab initio calculations for a
finite cell size, even when one wishes to describe an isolated
object. This influences the electronic structure and can lift de-
generacies due to the imposed space group of the artificial
crystal. Moreover, the induced potentials on the repeated objects
influence the results. However, careful convergence tests allow
one to reach the limit of the isolated object within a desired
precision.
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tron–hole” interaction (also called electron–hole
exchange [7]). These LFE reflect the fact that an
inhomogeneous system exhibits an electronic re-
sponse that is position-dependent (and not only
distance-dependent). It is intuitively clear that such
an effect will be the stronger the larger the inhomo-
geneity of the system. Because a finite object repre-
sents a strong inhomogeneity in the otherwise
empty space (surface effect), it is to be expected that
LFE are particularly important for those structures.

As mentioned above, besides comparing finite
and infinite systems we wish to compare the quan-
tities describing absorption and loss functions. As
has been shown in Ref. [7], both spectra can be
described by a generalized spectrum A(�)

A��	 � �Im�lim
q30

v0�q	SG�G��0�q, �	�, (4)

where the long-range (G � 0) part v0(q) of the
Coulomb potential vG(q) appears. In this equation
the matrix S stands for a modified polarization
function �� in the case of absorption, and for the
reducible response function � for EELS. In the
framework of TDDFT, these functions are obtained
by solving a Dyson-like screening equation, where
the full response functions are related to the inde-
pendent-particle one via a kernel that contains a xc
contribution fxc (i.e., the functional derivative of the
time-dependent KS xc potential vxc with respect to
the density), and a bare Coulomb contribution.
Only the latter distinguishes � and �� :

��� � �0 � �0�v� � fxc	��
� � �0 � �0�v � fxc	�. (5)

Moreover, � (or �̃) can be alternatively expressed in
terms of the irreducible polarizability �̃:

��� � �̃ � �̃v� ��
� � �̃ � �̃v�. (6)

The Coulomb kernel has to be taken with (v) or
without (v� � v � v0) its long-range (G � 0) contri-
bution in the case of electron energy loss and ab-
sorption, respectively. This apparently subtle dif-
ference is crucial for extended systems, whereas its
contribution in finite systems should be vanishing.
Instead, the term v� expresses the LFE, as one can
easily see in the RPA case ( fxc � 0), where the first
line of Eq. (5), neglecting v� , yields �� � �0, i.e., the
result without LFE. Also the xc effects can play an
important role: In many cases v or v� alone is not

sufficient to obtain quantitative (for EELS) or even
qualitative (for absorption) agreement between the-
ory and experiment [7, 10].

Recently, a class of xc kernels has been proposed
that turned out to be very efficient in the descrip-
tion of solids. They are directly derived from the
Bethe–Salpeter equation of many-body perturba-
tion theory. A parameter-free ab initio expression
has been obtained in several different ways, always
leading to the same formula [7, 10–13]. The results
using this kernel in conjunction with a quasi-parti-
cle bandstructure are in excellent agreement with
those of the Bethe–Salpeter equation, with a poten-
tially reduced computational effort; still, the calcu-
lations are significantly more cumbersome than
those in RPA or TDLDA. However, when propos-
ing the ab initio expression in Ref. [10], some of us
have also shown that already the asymptotic static
long-range contribution (LRC) of the form

f xc
LRC�r, r�	 �

�

4��r � r�� , (7)

where � is a material dependent parameter, is suf-
ficient to simulate the strong continuum exciton
effect in the absorption spectrum and in the refrac-
tion index of bulk silicon when quasi-particle ener-
gies are used as a starting point. More recently, we
have shown [14] that � can be obtained directly
from the static dielectric constant, and that the re-
sulting fxc leads to excellent absorption spectra for
many small- and medium-gap semiconductors. In
other words, a total kernel v� � �v/4� � �/4�v0 �
(1 � �/4�)v� , which simply rescales the Coulomb
contribution of the RPA, is able to simulate the
main many-body effects in the absorption spectra of
semiconductors. Note that hence, in the case of
absorption, the only long-range contribution stems
from �, which explains its strong effect even though
its weight has been shown to be relatively small
(�/4� is typically smaller than 0.05) in the case of
absorption. In the case of EELS, v�/4� is added to
a long-range term v of weight 1, which explains
why � has to be strongly increased to have a sig-
nificant effect [14]. As some examples below will
illustrate, the long-range term v0 is a crucial quan-
tity for the understanding of many of the failures
and successes of TDDFT.

In summary, the long-range (G � 0) contribution
to the bare Coulomb potential v makes the differ-
ence between absorption and EELS of solids. When-
ever this contribution is negligible both spectra
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should hence be equivalent. [Note, however, that
this statement is based on the fact that in the long-
wavelength limit for the photon (dipole approxima-
tion) the transverse �xx response is identified with
the longitudinal response �(qx3 0). For an increas-
ing size of a nanostructure, one cannot suppose any
longer that the wavelength of the light is infinite
with respect to the size of the structure, and the
measured absorption and EELS will be different.]
The effect of the remaining term (v�) (describing
LFE) is expected to yield a strong modification of
the spectra in a finite system, whereas in a solid it
will depend on details of the spatial distribution of
the charge density. Also xc effects in TDDFT have a
Coulomb-like contribution that is very important
for the absorption spectrum of solids. Therefore, the
following discussions concerning Coulomb contri-
butions are also relevant for the understanding of
exchange and correlation.

B. ABSORPTION VERSUS EELS

It is now instructive to illustrate the previous
discussion for the simplest case when LFE are ne-
glected, i.e., v� � 0. In this case �� � �̃ and � � �̃ �
�̃v0�, so that the description of both absorption and
EELS is then given by

Abs��	 � �v0Im��� 00��	� � �v0Im��̃00��	�

EELS��	 � �v0Im��00��	� � �v0Im� �̃00��	

1 � v0�̃00��	�.

(8)

In this simplified case it is clear that � and �� are
fundamentally different (� is screened, but not �� ),
and that this is entirely due to the (in principle) tiny
difference of the kernel in Eq. (6) discussed above. It
is clear from Eqs. (6) and (8) that, if the long-range
part is negligible, � and �� are the same, and so are
the EELS and absorption spectra.

To make a comparison between absorption and
EELS for both finite and infinite systems, we apply
Eq. (8) to the case of a solid where the lattice pa-
rameter is increased, in order to go toward the limit
of an isolated system. In doing this limit, we exploit
the fact that v0�̃00 � (1/�) where � is the volume of
the unit cell of the lattice. Thus the ratio between
EELS and absorption given by Eq. (8) is

Abs
EELS � �1 �

�

�
�




�2�, (9)

which clearly shows how absorption and EELS
tend to give the same spectrum in an isolated sys-
tem, when �3 �. Here � and 
 are functions of the
frequency and depend, of course, on the polariza-
tion function �̃.

Equation (8) can be generalized in a straightfor-
ward way to the case when LFE are fully included
(see Appendix for the derivation). In this general
case �� replaces �̃ in Eq. (8), yielding:

�Abs � �v0Im��� 00�

EELS � �v0Im� �� 00

1 � v0�� 00
�. (10)

It is clear that the limit behavior (9) still holds in an
analogous way.

Up to now we have not specified the form of the
polarization operator �̃, which in most cases is
taken to be the independent RPA response func-
tion; but to obtain qualitative agreement with ex-
periments it is needed to include a higher degree of
sophistication (such as the inclusion of the electron–
hole interaction, absent in RPA, either through the
solution of the Bethe–Salpeter equation of many-
body perturbation theory or within TDDFT with an
appropriate fxc kernel).

C. A SIMPLE “ONE-POLE MODEL”

Here we derive the frequency dependence of the
functions � and 
, appearing in Eq. (9) for the
simplest case where only a single transition with
frequency �0 dominates the response function. In
this “one-pole model,” the imaginary part of the
dielectric function is given by a delta function in
energy:

Im��� � Im�1 � v0�̃00�

�
v0A
�


��� � �0	 � ��� � �0	�, (11)

and the corresponding real part is, by Kramers-
Kronig:

Re����	� � 1 �
2v0A
��

�0

�2 � �0
2 . (12)

From this we can evaluate the ratio between ab-
sorption and EELS, as in Eq. (9):
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Abs��	

EELS��	
� 1 �

1
� � 4v0A�0

���2 � �0
2		 �

1
�2 �v0

2A2

� � 4�0
2

�2��2 � �0
2	2 � 
��� � �0	 � ��� � �0	�

2	�. (13)

Comparing with Eq. (9), we can infer the frequency
dependence of �(�) and 
(�) for this model. We
note from (12) that Re{�} crosses the frequency axis
when

� � �
�0
2 �

2v0A�0

��
,

showing that the plasmon peak corresponding to
Re{�} � 0 moves toward the given absorption peak
at �0, as the cell volume � increases.

D. EFFECTIVE MEDIUM THEORY

To disentangle the different effects involved in the
connection from solids to isolated structure, a fully
classical picture might help. It provides analytical for-
mulas that already take into account many of the
effects we are considering. Effective medium theory
(EMT) was originally developed to describe the di-
electric properties of alloys containing clusters of dif-
ferent metals embedded in a matrix made of another
metal [15]. Nowadays, EMT is extensively used to
deal with photonic crystals and nanoscaled hetero-
structures. This classical approach is simply based on
Maxwell’s equations and on the further assumption
that the dielectric response of the materials inside
each constituent of the composite is the same as the
one of bulk materials:

��r, �	 � �i��	 if r � material i, (14)

where �i(�) is the dielectric function of the bulk
material labeled i. This assumption should be well
justified when the size of the domains is large, i.e.,
when quantum effects due to the surface become
negligible. EMT is a mesoscopic scale approach: It
totally neglects the microscopic scale details, such
as atoms and bonds, but correctly handles larger
structures, such as interfaces, that are still small
with respect to the wavelength of light. Although
this scheme makes use of a local dielectric function
�(r), it contains all the ingredients necessary to give
a full account for the classical LFE arising from the
presence of interfaces between domains.

As an illustration, consider a regular lattice of
objects of dimensionality d made of material 1 em-
bedded in a matrix of material 2 with a filling factor
f (defined as the ratio of the object’s volume over
the total volume), in the limit case where f is small.
The well-known Maxwell-Garnett formulas [15] can
be derived under these assumptions, for every dimen-
sionality d (d � 0 for dots, d � 1 for wires, d � 2 for
slabs) and for both directions of the polarization of
light (only � direction is meaningful for d � 0):

�M
� ��	 � f�1��	 � �1 � f 	�2��	 (15)

�M
���	 � �2��	�1 �

�3 � d	 f���	

1 � f���	 	, (16)

where �(�) � (�1(�) � �2(�))/(�1(�) � (2 � d)�2(�)).
�M

� stands for the macroscopic dielectric function
for light having polarization parallel to the inter-
faces and �M

�(�) for the macroscopic dielectric func-
tion for light having polarization perpendicular to
the interfaces. Note that �M

� is merely a weighted
average of bulk dielectric functions, whereas �M

�(�)
includes more intricate quantities related to the ge-
ometry, that account for classical LFE.

Expressions (15) and (16) provide, as a byprod-
uct, the general result for the absorption spectra of
isolated dots, wires, or slabs. If one increases the
volume in which each single structure is embedded
and one takes �2 � 1 for the vacuum, Eqs. (15) and
(16) yield

Im��M
� ��	� � Im��1��	� (17)

Im��M
���	� � ��3 � d	2Im� 1

�1 � �2 � d	�. (18)

Figure 1 shows the drastic change in the absorp-
tion of light polarized perpendicularly to the inter-
face because of the dimensionality. In particular,
Eq. (18) points out that, even in a fully classical
picture, the absorption of any isolated structure, as
large as one desires, will never tend to the absorp-
tion spectrum of the bulk, but rather to a function
closely related to the loss function of the bulk.2

Finally, the EMT may be considered as an effective
tool to evaluate easily the dielectric properties of

2Of course, when one measures “bulk” absorption spectra,
the samples are always finite. As mentioned above, the discus-
sions here do not apply to the actually measured spectra of large
samples, since then the wavelength of light can no longer be
considered to be large compared to the sample size.
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large-scale isolated structures, starting from the
ones of the bulk constituents, since the most signif-
icant effects, i.e., the classical LFE, are properly
handled. Evaluating Eqs. (15) and (16) for a given
value of the filling factor f and comparing the result
to the limiting case equations (17) and (18) allows
one also to estimate the error made in ab initio
calculations that use the artificial periodicity, pro-
vided that the unit cell is big enough to exclude that
the ground-state electronic structure is still signifi-
cantly changed by the presence of neighboring ob-
jects.

3. Illustrations: Model Systems

In this section we show numerical results to sup-
port the analytical conclusions of the previous sec-
tion, with special attention to some results impor-
tant from a practical point of view.

A. FROM SOLIDS TO MOLECULES

The first analysis concerns the infinite–finite sys-
tem limit. We have performed numerical simula-
tions of a fcc-periodic array of beryllium atoms with
an increasing lattice parameter, in order to have
atoms farther apart from each other, i.e., a periodic
representation of an isolated system. We have used
the standard supercell plane-wave representation
of the electronic wave function for the ground-state
electronic structure and the RPA for the response

function,3 i.e., �̃ � �0. Moreover, because we want
to analyze the evolution of the spectra going to-
ward a finite system, we sample the Brillouin zone
only with the � point.

In the two panels of Figure 2 we show results for
the fictitious solids formed by Be atoms at various
interatomic distances. We clearly see that absorp-
tion and EELS become more and more similar as
the cell size increases, both considering and neglect-
ing LFE. In particular, for a cell with a lattice pa-
rameter of 55 a.u., in both cases the spectra almost
coincide (the intensity of all the spectra of Fig. 2 has

3Inclusion of better exchange-correlation functionals will not
modify the conclusions of the present analysis, which is based on
the long-range part of the effective electron–electron potential.

FIGURE 1. Model calculation of the absorption spec-
tra of silicon isolated dots (dotted line), wires (dashed
line), and slabs (dash-dotted line) for light polarized
perpendicularly to the interface within EMT, compared
to the RPA absorption spectrum of bulk silicon (solid
line).

FIGURE 2. fcc array of beryllium atoms. Absorption
and EELS for several cell sizes (i.e., for several inter-
atomic distances): 20, 32, and 55 a.u. Upper panel: cal-
culations made neglecting local fields. Bottom panel:
local field effects included. The legend is the same for
both panels.
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been scaled by the factor 1/�, and � � volume of
the unit cell).

Another fact that emerges from the calculations
shown in Figure 2 is that the absorption spectrum
converges much faster with cell size than the EELS
one. This could be expected from the fact that the
energy-loss spectrum is, by construction [see Eq.
(8)], more sensitive to long-range effects, therefore
larger size are needed to minimize interactions with
neighboring cells. Consequently, for a given cell
size the absolute error is expected to be smaller in a
supercell calculation of Im{�M} rather than of the
loss function. This provides us with a practical rule
for the computation of spectra of finite-size struc-
tures. This finding is in perfect agreement with the
analytical conclusions of Section II.B. We can make
a more quantitative comparison between EELS and
absorption by plotting the difference between the
position of the first peak of both kind of spectra as
a function of the cell size. This analysis is presented
in Figure 3, together with the extrapolation to large
cell volume of the analytical expression of Eq. (13).
This extrapolation is done via a simple fitting func-
tion

f��	 � a �
b
�

,

where f is the difference between the position of the
absorption peak and the peak of the loss function.
The parameters of the extrapolation appear in the
legend and the fact that the asymptotic value a �

�0.004 is very close to zero means a virtually per-
fect superposition of the peaks of absorption and
EELS, in the limit of infinitely distant atoms, i.e., in
the isolated atom limit. The good agreement of the
fit gives further support to the analysis presented in
Section 2.B.

When comparing the spectra with and without
LFE in Figure 2, another important fact is observed.
Without LFE the spectrum is dominated by a single
peak related to a single bound-to-bound transition
at about 5 eV, whereas with LFE there is a redistri-
bution of oscillator strength toward higher energies
and the formation of a double-hump structure. The
blue-shift is a direct manifestation of the repulsive
character of the Coulomb potential that renormal-
izes the original bound-to-bound transition mixing
it up with other excitations. In fact, the peak posi-
tion is moved from the discrete part of the spectrum
toward the continuum.4 Unfortunately, when the
states are moved to the continuum we experience a
more severe problem of convergence of the spectra
with respect to cell size. This problem is a result of
the nonproper description of continuum states in
the supercell technique (confinement induced by
the supercell).

B. FROM ABSORPTION TO ENERGY LOSS

We consider now a solid system. It is instructive
to see the absorption and energy-loss spectra
(within RPA and with LFE) for a real system, like
silicon, in the same figure (Fig. 4). This figure shows
the imaginary part of the response function [Eq. (5)]
of bulk silicon, with a long-range contribution
weighted by a variable �. The electronic structure
calculations needed to construct �0 have been per-
formed in DFT-LDA, at the lattice constant of 10.217
a.u. Following Eq. (4), the generalized spectrum
A(�) defines EELS or absorption depending if the
long-range component v0 has been included or not:

Abs
EELS� � A��	 � �Im�v0�q 3 0	S00�q 3 0, �	�,

(19)

with

S��	 � �1 � �0�v0 � �0v� 	�1�0. (20)

4Exchange-correlation effects are attractive and give rise to an
additional red-shift of the spectra. This is important to obtain
quantitative description of the optical spectra of small clusters [7,
16–19].

FIGURE 3. fcc array of beryllium atoms. Difference of
peak positions of absorption and EELS as a function of
the cell parameter. The extrapolation is represented by
the full line.
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If � � 1, A(�) � EELS, and if � � 0, A(�) � Abs.
Moreover, we can follow in Figure 4 how the EELS
turns into the absorption when v0 is continuously
switched off.

This simple example well illustrates the action of
the long-range component, and how its inclusion or
exclusion can make a big difference between ab-
sorption and electron energy loss spectra.

C. FROM RPA TO THE INCLUSION OF XC
EFFECTS

Up to now, we have only analyzed the questions
related to the microscopic and macroscopic contri-
bution of the self-consistent variation of the Hartree
potential. The latter turned out to be a key factor in
determining the difference between absorption and
EELS. We want now to discuss briefly another in-
gredient, which plays an important role in the de-
scription of practical spectra of materials, namely
the exchange-correlation kernel fxc. It was men-
tioned in Section 2, that an exchange-correlation
kernel as fxc � �/q2 is able to yield a good descrip-
tion of continuum exciton effects. The effect of this
kernel can be seen in Figure 4. The most striking
result is that the inclusion of the small negative (� �
�0.2) portion of v0 in the total kernel leads to good
agreement with the absorption experiment.5 This
result shows once again the importance of the long-
range component of the Coulomb interaction in

extended systems. In the case of the absorption, the
�v0 term is the only long-range term present, so that
its inclusion is essential to describe correctly the
strong continuum exciton in semiconductors like
silicon.

D. A JELLIUM MODEL: FROM CLUSTERS TO
SOLIDS. LONGITUDINAL VERSUS
TRANSVERSE RESPONSE

The evolution of the optical response of finite
systems toward the bulk values offers the possibil-
ity to monitor the development of collective effects
in metallic systems and to assess the similarities
between the optical spectrum and EELS. The pur-
pose of this section is to complement our previous
discussion by looking at the size evolution of the
optical absorption in the context of the simplest
structural model of a spherical metallic cluster,
namely the spherical jellium model. According to
this model, the ionic background is smeared out to
form a homogeneous distribution of positive charge
n� � ne�(R � r), where the radius R is related to the
homogeneous bulk electron density by (4/3)�R3 �
ne. Clusters of alkali elements turn out to be well
described by this model [22, 23].

Within classical electrodynamics, an isolated me-
tallic sphere in vacuum exhibits a series of multi-
polar surface plasmons of frequency �l [24] as a
response to an arbitrary external electric field

�l � �p
 l
2l � 1 , (21)

where l is the angular momentum quantum num-
ber, and �p is the plasma frequency related to the
“homogeneous” electron density ne of the system
given by �p � 4�nee

2/me. For a dipolar field, the
absorption is dominated by a single peak, the Mie
surface plasmon with �M � �p/�3. Those surface
modes are independent of the cluster size, in con-
trast to experiments, in simple metal clusters [22].
For large l the resonance frequency tends to the
planar surface plasmon resonance �s � �p/�2. As
we are interested in the evolution of the spectral
features with system size, the full response

���	 � � d3r � d3r�Vext�r; �	��r, r�; �	Vext�r�; �	

(22)

5In this case, a scissor operator has also been applied to
reproduce the self-energy contribution, and let the kernel take
care only of the excitonic effects, as described in the previous
section.

FIGURE 4. Bulk silicon. Continuous connection be-
tween EELS and absorption spectrum, via v0. Experi-
ments from Refs. [20] (absorption) and [21] (EELS).
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is not needed, and the knowledge of averaged
quantities as the moments of the strength function
{mk � � dEEkS(E); called sum rules [25]6 with S(E) �
�1/� Im�Vext�(�)Vext
} are enough to have a cor-
rect picture of the physical processes. In particular,
for dipolar fields m1 is model independent (m1 �
(�2e2/2m)Z, where Z is the number of electrons)
and is connected with the well-known Thomas–
Reiche–Kuhn (TRK) “f-sum” rule, whereas m�1 is
connected to the static polarizability � � 2m�1.
Moreover, if we now define mean energies as Ek �
(mk/mk�2)1/2, then the average energy Ẽ and vari-
ance � of the absorption spectrum satisfies the fol-
lowing constraints: E1 � Ẽ � E3 and �2 � (E3

2 �
E1

2)/4. For a uniform electronic spherical density
(large R limit) and dipolar external field it is easy to
show that E1 � E3 � ��p/�3. In this case, the
spectrum is dominated by a single excitation that
corresponds to the classical Mie plasmon described
above, and illustrates the use of plasmon pole mod-
els.

Now we can go a step further and allow for a
realistic description of the self-consistent electron
charge density in the jellium model. In this case, we
can show that

E3 � �wp
 1
3 �

�Z
3Z , (23)

where �Z � 4� �R
� r2n(r)dr measures the electronic

spill-out beyond the positive background [23].
Equation (23) shows that E3 tends toward the sur-
face-dipole plasmon resonance �p/�3 with in-
creasing cluster size (hence, increasing Z), because
�Z/Z 3 0 as Z 3 �. All quantities involved are
positive, hence E3 reaches its limiting value from
below. The inequality Ẽ � E3 tells then immediately
that E1, as well as the average energy Ẽ, also ap-
proach �p/�3 from below. This evolution of the
optical dipole surface resonance toward the bulk-
dipole value from below agrees with experiments
for large K and Li clusters [26]. Similarly, in this
model the static polarizability is enhanced with
respect to the classical Mie value, due to the spill-
out of the electronic density.

In the formal quantum mechanical framework
discussed in the previous sections, the interaction
between an electronic system and an external field,

given by the potential Vext(r; t) � � d�e�i�tVext(r; �),
can be fully described within linear response by
knowing the imaginary part of the polarizability
tensor (22), from which the photoabsorption cross
section is proportional to the imaginary part of the
dynamical polarizability, or equivalently to the
imaginary part of �. In other words, it is propor-
tional to the imaginary part of an effective inverse
longitudinal dielectric function ��1 � 1 � v�. Fol-
lowing this approach, it seems evident that by in-
creasing the system size toward the bulk limit we
will reach the EELS spectra instead of the bulk
optical absorption, as obtained in the simple jellium
model discussed above. To reach this conclusion we
have described the photon field in a longitudinal
gauge, taking into account only electric-field effects.
However, neglecting current-induced fields is only
justified when the size of the system is smaller than
the wavelength of the photon field, otherwise the
absorption spectrum is characterized by the cur-
rent–current response function (transverse) instead
of the density–density response function that we
have been using up to now.

Now it is important to make contact with the
simple jellium model and note that bulk plasmons
are longitudinal excitations that, in principle, can-
not be probed by optical absorption but they can be
seen by EELS. The distinction between longitudinal
and transverse modes (surface and volume plas-
mons are pure transverse and longitudinal excita-
tions, respectively) breaks down in low-dimen-
sional structures, making those modes also
accessible to light absorption experiments. In this
context, we can envision that the optical absorption
spectrum and EELS of finite systems would be pro-
portional. However, as the size increases the dis-
tinction between longitudinal and transverse be-
comes relevant not only to make a distinction
between the equation leading to the macroscopic
function �M and loss function (see previous sec-
tion), but also for the calculation of the matrix ele-
ments of the linear-response tensor � where the
proper longitudinal (EELS) and transverse (photon)
external fields have to be considered.

It is relevant to discuss now the relation to EELS
experiments. To do so it is better to write down the
energy loss probability P(�) corresponding to an
electron with velocity v interacting with an isolated
sphere of dielectric function �(�) [28] at a distance b
(impact parameter). Integrating over the electron
trajectory and neglecting retardation effects in the
induced potential, the final result is

6For q- and l-dependent external fields ( jl(qr)Yl0(�)) repre-
sents the angular decomposition of an incident photon, de-
scribed as a plane-wave ei(qr��t), the general expressions for the
odd sum rules are given in Refs. [23, 27].
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P��	 �
4R
�v2 �

l�1

�
m�0

l 2 � �m0

�l � m	!�l � m	!

� ��R
v � 2l

Km
2 
�b/v�Im��l��	�, (24)

where Km(x) stand for the modified Bessel functions
and �l(�) is the sphere surface response given by

�l��	 �
l�1 � �	

l� � l � 1 . (25)

Equation (24) takes into account the contribution
of all the multipolar terms of the induced potential
created by the moving charge. Quantum mechani-
cal effects are embodied in the otherwise isotropic
dielectric response �(�) that can be obtained di-
rectly from �. Again, the excitation frequencies are
determined by the zeros of the denominator of �l

and for a simple metal [described by a Drude-like
dielectric response �(�) � 1 � �p

2/�2] are given by
the classical Mie multipolar plasmon frequencies �l

[Eq. (21)]. Note that the dipolar term is dominant
only when the sphere radius is much smaller than
the range of variation of the field R � v/� or when
the probe electron travels far away from the target
b � R. However, when the radii are of the order of
v/�s many l-terms contribute, indeed, for large R
the dipolar term becomes negligible as the probe
sees a “nearly-flat” surface. This can be rationalized
in terms of the image charge induced by an electron
close to a large sphere. This induced density piles
up in a small region close to the probe; thus many
multipolar terms are needed to describe such a
localized charge. In the usual case of a large impact
parameter, the dipolar term becomes the dominant
one in Eq. (24), and in this case we see that both
EELS and the dipolar optical absorption spectra are
proportional, as both are related to the imaginary
part of � in finite systems. This result corroborates
the general discussion in this and the previous sec-
tion and the results of our quantum mechanical
calculations.

4. Illustrations: Real Systems

In this section we present applications to finite
and strongly inhomogeneous systems that prove
the importance of the inclusion of the v� term, de-
scribing LFE.

A. GAAS/ALAS SUPERLATTICES

Semiconductor superlattices (SLs) are multilay-
ered structures artificially constructed by epitaxial
growth techniques. They are an example of systems
where the inhomogeneity is determined by the geo-
metrical structure. As we already know that LFE
measure the inhomogeneity of the charge density,
their contribution is expected to be essential to de-
scribe such systems. Botti et al. [29, 30] studied the
dielectric tensor of (GaAs)p/(AlAs)p SLs, grown in
the [001] direction. GaAs and AlAs have both zinc-
blende structures with almost the same lattice pa-
rameter a. In the SL, the reduction of the originally
cubic symmetry gives rise to a dielectric anisotropy,
which depends in a nontrivial way on the layer
width pa, where p is the number of planes consti-
tuting each layer. The possibility to control the an-
isotropy of the dielectric function (i.e., the bire-
fringence) through the manufacturing of these ma-
terials has been successfully exploited to generate
optical frequency conversion in the low-frequency
region [31]. To this purpose, it is interesting to
study the zero frequency limit of the birefringence.

Figure 5 shows the static dielectric function for

FIGURE 5. RPA static dielectric tensors of (GaAs)p/
(AlAs)p SLs calculated without (�M

NLF, upper panel) and
with (�M

LF, lower panel) LFE and their difference, i.e., the
LFE (inset), as a function of the SL period p from Ref.
[29]. Arrow: average of bulk GaAs and AlAs dielectric
constants, calculated without LFE. Dotted (dashed) line:
classical effective medium value of �M

� (�M
�).
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light polarized in the plane of the interface �M
� and

in the direction perpendicular to the interface �M
� , as

a function of the SL period p. The curves in the
upper panel of Figure 5 refer to independent-parti-
cle (IP) RPA calculations, which neglect LFE. The
differences between �M

� and �M
� are due to quantum-

confinement effects. For large layer widths, quan-
tum-confinement effects vanish and �M

� and �M
� tend

to the average of the bulk dielectric constants of
GaAs and AlAs calculated without LFE (arrow on
the upper panel of Fig. 5). As a consequence, the
calculated birefringence �n � ��M

� � ��M
� goes to

zero. This theoretical prediction is completely mis-
leading, as a vanishing birefringence is not only in
disagreement with experimental data, but also with
the classical limit given by effective medium theory
(Section 2.D).

The lower panel of Figure 5 shows the dielectric
tensor components calculated including LFE. The
LFE are displayed in the inset of Figure 5: For an
in-plane light polarization, they are found to be
almost constant with the period; in particular, they
are equal to the average of LFE corrections to the
dielectric constants of bulk GaAs and AlAs. This is
consistent with the fact that the multilayer structure
is not “seen” in plane. On the other hand, for in-
creasing p, LFE give increasingly negative contribu-
tions in the direction that crosses the interfaces,
where the inhomogeneity of the medium is brought
into play. Thanks to the anisotropy of LFE, the
birefringence undergoes a steep rise in the small–
medium period region, reaching a finite plateau
value for large SL periods, in agreement both with
the experimental data [32] and the classical effective
medium theory.

B. GRAPHITE/GRAPHENE AND CARBON
NANOTUBES

Carbon structures are a much studied subject,
not only because of technological importance, but
also because they can be used as prototypical illus-
trations in many circumstances. For our purpose,
the interesting feature is that carbon structures
cover all dimension ranges, from the 3D bulk dia-
mond, quasi-2D graphite, quasi-1D nanotubes to
small fullerene-like objects. According to the di-
mension and feature studied, different effects can
be important. When one studies EELS in bulk dia-
mond, for small momentum transfer bandstructure
effects are dominant whereas other contributions,
in particular LFE, can be neglected [33]. When the
dimension is reduced and hence the system be-

comes less isotropic and/or less homogeneous,
other effects start to be important. For example,
recent RPA calculations for graphite and other gra-
phene-layer structures showed that the interlayer
interaction was the cause of considerable changes
to the energy-loss function in the small-q momen-
tum-transfer limit [34]. Figure 6 contains the RPA
results for the dielectric and energy-loss functions
of AB graphite and of a number of graphene geom-
etries. The latter have been obtained by increasing
the layer–layer separation, thereby effectively in-
creasing the magnitude of the ratio (c/a)hex of the
lattice parameters and, therefore, the unit-cell vol-
ume.

It can be seen (Fig. 6) that in the loss function two
distinct peaks appear at certain frequencies, de-
pending upon (c/a)hex. These peaks represent the
longitudinal collective excitations of the valence
electrons, namely the plasmons. For graphite and
graphene (where the valence electrons are of the �
and � type) these plasmons are known as the � and
the � � � (total one). On the other hand, the in-
plane absorption spectrum, Im{�M}, displayed in

FIGURE 6. Energy-loss and dielectric function for
small in-plane q (�0.22 Å�1) for graphite and the gra-
phene-layer geometries with multiple (c/a)hex ratios. The
results shown were obtained within the RPA without
LFE. LFE are negligible in this q range.
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the middle panel in Figure 6, is dominated by a
very intense peak structure at low frequencies (up
to 5 eV) and also by another peak structure of
broader frequency range that sets in beyond 10 eV
and has a pronounced peak at 14 eV. The origin of
these peak structures is due to � 3 �* and � 3 �*
interband transitions, respectively. It is evident that
the frequency range of these transitions and the
position of the major absorption peaks do not
change for different (c/a)hex. Only a uniform de-
crease in oscillator strength is seen owing to the
larger unit-cell volumes when increasing the (c/
a)hex ratio. This stability of the absorption with in-
terlayer distance has been explained in terms of the
interband transitions involving electron states at
specific regions of the Brillouin zones [34].

In contrast, the loss function exhibits more im-
portant interaction effects: in particular the peak
position of the total (� � �) plasmon is extremely
sensitive to variations of the interlayer distance, i.e.,
the (c/a)hex ratio. The tendency observed is that for
larger (c/a)hex the macroscopic screening vanishes
(Re{�M}3 1) and the loss and absorption functions
tend to coincide: �Im{1/�M} 3 Im{�M}. This coin-
cidence is achieved mainly through the displace-
ment of the � � � plasmon: this plasmon is dis-
placed at a much faster rate to lower frequencies,
toward the 14-eV peak of the absorption spectrum
(peak of the � 3 �* transitions), with increasing
(c/a)hex. In contrast, the �-plasmon peak position
remains insensitive to changes of (c/a)hex since this
plasmon is already located very close to the 0–5-eV
range of the � 3 �* transitions in Im{�M}.

Having, up to now, discussed the interaction
effects in graphite and graphene it is instructive to
examine the significance of these effects in structur-
ally related materials: the carbon nanotubes. Here
we are concerned with the single-walled tubes ar-
ranged in two distinct configurations: in the solid as
a crystalline hexagonal phase but also as nearly
isolated (distant) objects with very weak intertube
interaction in the ground state.

Experimentally, the analysis of the observed en-
ergy-loss data of crystalline samples of single-
walled carbon nanotubes is hindered by the fact
that the samples studied contain tubes non-per-
fectly aligned and of a range of diameters [35]. The
issue of intertube interaction is also extremely es-
sential since recently it became possible to grow
well-aligned carbon tubes of specified diameter (�4
Å) inside the channels of zeolite matrices [36];
therefore the intertube spacings depend upon the

structural characteristics of the host material in the
experiment.

In particular, the very thin armchair (3, 3) nano-
tubes of nearly 4-Å diameter have been the subject
of a number of recent theoretical studies, focusing
on their dielectric response in the energy range of
valence–electron excitations (see Refs. [37, 38]).
RPA calculations of the optical absorption includ-
ing LFE revealed a striking manifestation of inter-
tube interaction effects: owing to the depolariza-
tion, for the case of widely separated nanotubes
[37], the nanotube system did not absorb the inci-
dent light (for frequencies up to 4 eV) when the
latter was polarized normal to the tubes axes, a
phenomenon initially observed in the experiment
[36].

For these (3, 3) single-walled nanotubes we de-
termined the electron energy-loss function for q
orientations parallel to the tubes axes. For the case
of small q (0.23 Å�1) the loss function is plotted in
Fig. 7(a) for two chosen intertube (interwall) sepa-
rations: in the first geometry (distant tubes) the
intertube distance is set at 5.5 Å, whereas in the
second geometry we are dealing with a solid of
strongly interacting tubes. In the latter case, the
total energy minimization yielded an intertube dis-
tance of 3.2 Å. It can be seen that three distinct
peaks appear at certain frequencies in the loss func-
tions. The low-frequency intraband plasmon is first
seen at �2 eV (denoted as i). This plasmon origi-
nates from the free carriers of the two linear bands
that intersect at the Fermi level (a situation common
to all armchair carbon tubes [39]). Rather close in
energy is found the � plasmon (�5 eV). The peak
frequencies of these two plasmons are the same for
both intertube distances studied here. Finally, the
total (� � �) plasmon is found beyond 20 eV with
a peak frequency depending strongly upon the in-
tertube distance: the strong intertube interaction in
the solid yields a shift in the � � � plasmon peak by
almost 6 eV with respect to the peak of the same
plasmon for the distant tubes.

For the large q considered here [0.76 Å�1; see Fig.
7(b)] both � and � � � plasmons disperse toward
higher frequencies. For this large-q magnitude, the
intraband plasmon completely disappears and the
� plasmon is heavily damped. The LFE are now
very important especially for the system of distant
tubes: LFE cause a considerable blue-shift of the
center of gravity of the � � � plasmon. As a result
this plasmon-peak position for the distant tubes
approaches the position of the same plasmon in the
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solid. In lower frequencies LFE do not appear as
important.

The fact that the peak frequency of the � � �
plasmon is governed by the intertube distance re-
sembles closely the situation in graphite and gra-
phene where the same plasmon displays a similar
dependence upon the interlayer distances, for small

magnitudes of q. To a good approximation, the � �
� plasmon peaks in the (3, 3) nanotubes, in the solid
and for the distant ones, (for small q parallel to the
tubes’ axes) are very close to the peak positions of
this plasmon in graphite and graphene [for 2 (c/
a)hex] for in-layer q orientations (see Fig. 6). On the
other hand, the lower-frequency part of the loss
function of the tubes shows certain important dif-
ferences from the graphitic one. Graphite does not
support a low-frequency intraband plasmon in the
1–2-eV range; also the graphitic � plasmon has a
higher peak frequency (at �7 eV) for small in-layer
q (Fig. 6). This suggests that the different details in
the electronic bandstructures between graphite and
the (3, 3) carbon tubes play a more essential role in
this energy range.

The present results demonstrate that both the
intertube Coulomb interaction and LFE (whose
strength depends on intertube distance as well as
the magnitude of q) are important factors that in-
fluence most notably the peak position of the total
plasmon in the loss function. The lower part of the
loss function exhibits a much weaker dependence
upon the intertube distances.

C. SILICON NANOWIRES

An interesting example of a unidimensional ma-
terial is a single quantum wire of silicon with bonds
saturated by hydrogens. Because this wire is made
of simple materials, silicon and hydrogen, the com-
plexity of the system only arises from its geometry,
which yields quantum confinement in two direc-
tions, band folding and charge inhomogeneities. As
in the case of SLs, the LFE are expected to be large
for a direction of polarization of the light crossing
the interfaces.

Here we simulate distant [110] wires with a su-
percell technique. Each cell contains a Si16H12 unit,
whose diameter is about d � 12 Å. The interwire
distance, 15 Å, is large enough to make wires prac-
tically isolated. After structural relaxation within
LDA, we performed a TDDFT calculation of the
dielectric function within RPA with and without
LFE. Alternatively, the EMT was used through Eqs.
(15) and (16) with f � 0.10 to evaluate the dielectric
function of the heterostructure from the one of bulk
silicon. The imaginary part of the dielectric function
within the different approaches is reported in Fig-
ure 8. For light polarized along the axis, the LFE in
�2

� are very small (dark solid and dashed lines). As
the polarization of light does not cross any inter-
face, the inhomogeneity of the nanostructure is not

FIGURE 7. Calculated RPA energy-loss functions for
the distant (3, 3) tubes and the solid of (3, 3) tubes. The
results were obtained for two different magnitudes of
momentum transfer q�: (a) equal to 0.23 Å � 1 and (b)
0.76 Å � 1. q� is parallel to the tubes axes. Continuous
(dashed) curves denote results obtained with (without)
LFE in the response.
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experienced and, as a consequence, LFE are not
larger here than in the bulk material. On the con-
trary, for light polarized perpendicularly to the
axis, the LFE on �2

� are huge. Similarly to the case of
carbon nanotubes [37], the depolarization effects
due to LFE make the wire transparent up to about
5 eV (dark dash-dotted line). If the LFE were ne-
glected (dark dotted line), the conclusion would
have been completely different, with qualitatively
wrong dielectric properties.

A striking conclusion provided by these results
is that the classical LFE taken into account thanks to
EMT (lighter lines) yield very good results with
respect to a full, computationally more expensive
RPA calculation. This means that, even in so small
nanostructures, quantum effects due to interfaces
are small compared to the overall bulklike behav-
ior. For instance, it can be noticed that peaks of �2

�

are located closely to the peaks of the bulk (given by
the EMT in that direction; lighter dashed line). The
major effect of the interfaces hence lies in the depo-
larization charges on the wire surface, which are
properly treated already within a classical picture.

D. SILICON NANOCLUSTERS

Silicon nanocrystals in the form of spherical
quantum dots have been widely investigated in the
past decade [16, 40–43] to explain how the photolu-
minescence of porous silicon is related to quantum
confinement and to surface passivation. Despite the
large number of studies, many open questions still
exist, mainly because of the disagreement of the
results of calculations performed within different
theoretical approaches [42].

Important effects on the peak positions are found
as expected, in dependence on the cluster size. As a
general rule, when the cluster size decreases the
increase in the quasi-particle gap blue-shifts the
absorption edge. The increase in the excitonic bind-
ing energy partially counterbalances this shift. Both
effects have to be adequately accounted for, in or-
der to obtain an accurate description of the optical
spectra. This means that the TDDFT xc kernel must
contain the sum of the physics of quasi-particle
energies corrections and electron–hole binding. It
has been shown that TDLDA xc kernel usually
provides good agreement with experiments for the
excitation energies of semiconducting clusters [16,
42, 44].

We present here optical absorption spectra of
hydrogen passivated silicon nanocrystals, obtained
using TDDFT within both the RPA and the TDLDA.
We studied nanocrystals with a diameter up to 10
Å, whose initial geometry was obtained by cutting
a spherical portion of the perfect fcc crystal. Dan-
gling bonds were saturated with hydrogen atoms
oriented in the directions of the missing bonds and
a structural relaxation of the cluster was performed
before calculating the optical response at zero tem-
perature and fixed geometry. Figure 9 shows the
results for the absorption spectra of Si5H12 and
Si10H16 nanocrystals. The dashed lines refer to the
independent particle (IP) RPA calculations, where

FIGURE 9. Calculated averaged dipole strength for
Si10H16 (upper panel) and Si5H12 (lower panel) clusters,
obtained within IP-RPA (dashed line), within TDLDA
(solid line), and within RPA (dot-dashed line). The geo-
metrical structure of the relaxed nanocrystal is also
shown.

FIGURE 8. Imaginary part of the dielectric functions
of [110] d � 12 Å silicon hydrogenated nanowires, cal-
culated within RPA with or without LFE, and within
EMT for both polarizations of light.
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both the xc kernel and the local fields are set to zero.
The IP-RPA curves exhibit prominent peaks in a low-
energy region (4–6 eV), where TDLDA calculations
(solid lines) predict instead that the system must be
transparent. In fact, in TDLDA calculations the ab-
sorption edge is moved to higher energies, in agree-
ment with experimental findings. We note that the
RPA curve is always found to be extremely close to
the TDLDA curve (as shown for the case of Si5H12 by
the dot-dashed line in the lower panel of Fig. 9). This
proves that the main contribution comes from classi-
cal crystal LFE rather than from xc effects.

Observe that silicon nanocrystals are a model sys-
tem for a regular lattice of objects of dimensionality 0
in an empty space. The drastic change in the absorp-
tion of one isolated cluster with respect to bulk silicon
is actually still verified in nanocrystals much bigger
than the ones we studied (see, for example, the
TDLDA absorption spectrum of the Si147H100 cluster
in Ref. [16]). In Ref. [16], Vasiliev et al. show that as the
size of the cluster increases, the absorption edge grad-
ually decreases, and the discrete spectra for small
clusters evolve into continuous spectra for large clus-
ters. This trend is also confirmed by our present cal-
culations for clusters with a diameter smaller than 10
Å. In analogy to what happens in quantum wires, and
coherently with the effective medium limit (see Sec-
tion 2.D), the absorption spectrum does not seem to
approach the absorption spectrum of bulk silicon, but
rather a function closely related to the loss function of
silicon.

E. ELECTRONIC EXCITATIONS FROM
SEMICORE STATES IN ZRO2 AND TIO2

We finally illustrate the drastic effect of the crystal
LFE on the excitation from semicore levels in mono-
clinic zirconia (ZrO2) [45] and rutile (TiO2) [46]. In the
atom, these states are located deep in energy, but have
a high spatial overlap with the 4d (resp. 3d) states. In
the solid, these states are located at 25 eV (in ZrO2) or
32 eV (in TiO2) below the top of the valence band.
Their excitation gives rise to plasmons in the 30–
60-eV range—the N2,3 edge in ZrO2 or the M2,3 edge
in TiO2. The RPA spectra without LFE, shown in the
inserts of Figures 10 and 11 (dashed line), compare
reasonably well with the experimental data (solid
line) up to 30 eV in ZrO2 (resp. 40 eV in TiO2). These
peaks correspond to excitation from extended states,
the valence plasmon around 15 eV and the collective
excitation stemming from the oxygen 2s states. How-
ever, at higher energy it becomes necessary to include
crystal LFE, as illustrated in Figures 10 and 11. This

results in the calculated main 4p plasmon being
shifted towards higher energies by �5 eV in both
ZrO2 and TiO2, in agreement with experiment. This
effect also manifests itself in the electron energy loss
spectra of other transition metal oxides, for example,
NiO [47].

5. Conclusions

We have discussed the importance of Coulomb
contributions to the electronic spectra. In particular,
besides a discussion of the impact of crystal local
field effects in finite systems, we have shown the
importance of the long-range part, which governs
the difference between absorption and loss spectra,
in extended systems. The long-range component

FIGURE 10. Loss function for monoclinic zirconia.
Solid line: experiment. Dashed line: theory with LFE.
Inset: theory without LFE. The theoretical curves have
been convoluted with a Voigt profile: Gaussian of
HWHM of 1 eV, and Lorentzian function of HWHM of 1
eV.
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leads to strong interactions in the excited state that
are not present in the ground state. We have per-
formed model calculations that illustrate the rela-
tion between finite and infinite systems, and be-
tween absorption and loss spectra. We have then
presented results for the static response of super-
lattices, the EELS of graphite, carbon nanotubes,
and transition metal oxides, the absorption spectra
of silicon quantum wires and of hydrogenated sil-
icon clusters, in order to stress the importance of
these effects in realistic situations. Even for the
cases where we have limited ourselves to RPA cal-
culations, the results presented here are also impor-
tant for the discussion of exchange-correlation ef-
fects, since the latter contain similar terms that
describe excitonic effects.
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Appendix: EELS versus ABS, LFE
Included

We will assume a compact matrix notation in
G-space, namely � � �G,G�(q, �). Starting from the
second of (6) we have

�̃ � ��1 � v�	�1

that substituted into the first:

�� � ��1 � v�	�1 � ��1 � v�	�1v� ��

� 
�1 � v�	��1��1�1 � v� �� 	

� 
��1 � v��1�1 � v� �� 	, (A1)
so


��1 � v��� � �1 � v� �� 	 3 ��1 � v � �� �1 � v�

and

��1 � �� �1 � v� � v � �� �1 � �v

� � 
�� �1 � �v��1 � �� 
1 � �v�� ��1.

If we want to consider only the head �00, we get:

�00 � �
G1

� �� 0G1
��GG� � �vG�� GG�	
�1�G10,

where

�vG � �v0 G�0

0 else.

Inverting the matrix (�GG� � �vG�� GG�) we can
write:

�00 �
�� 00

1 � v0�� 00
.

Therefore the difference between �00 and �� 00 is that
the first one is screened. This is important for the
discussion in the main text.
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