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Long-range behavior and frequency dependence of exchange-correlation kernels in solids
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We define an effective exchange-correlation kernelf xc
eff which allows us to obtain correct absorption and

energy loss spectra starting from an electronic structure obtained within some given approximation. We con-
sider, in particular, the Kohn Sham electronic structure calculated in the local-density approximation and that
obtained from a quasiparticle calculation. We show that in both cases the main feature able to account for the
experimental spectra is a sizable, complex, and frequency- and material-dependent long-range contribution to
f xc

eff . We write, in terms of this contribution, an expression for the macroscopic dielectric function which
is a generalization of the well-known contact-exciton approximation. Accurate absorption~for silicon and
diamond! and electron energy loss~for silicon! spectra are obtained.
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The description of many electronic spectra, such as, e
optical absorption, requires the inclusion of many-body a
in particular excitonic~electron-hole interaction! effects.1

Only recently and for relatively simple systems have th
effects been included inab initio calculations in the frame
work of many-body theory by the technically cumbersom
solution of the Bethe-Salpeter equation~BSE!.2,3

A good candidate for a computationally simpler approa
is ~the in principle exact! time-dependent density functiona
theory ~TDDFT!,4 where the many-body effects are tak
into account in the frequency-dependent exchan
correlation~xc! potentialvxc and its density functional de
rivative, the xc kernelf xc , accounting for xc effects in the
linear response. However, for real systems neithervxc nor
f xc are known. Approximations are often derived from mod
systems like the homogeneous electron gas, a prominen
ample being the local-density approximation~LDA ! for vxc

~Ref. 5! and the adiabatic local-density approximati
~ALDA ! for f xc , f xc

ALDA ~Ref. 6!. Concerning the optica
properties of solids, these approximations fail even qual
tively. They are not able to reproduce neither self-energy
excitonic effects, which can lead to wrong transition energ
and to a lack of important spectral features.

It has been shown7–9 that a crucial ingredient off xc in
infinite systems is a long-range~LR! 1/ur 2r 8u tail which is
absentin the xc kernel of the homogeneous electron gas.
due to both self-energy contributions7,8 and to excitonic
effects.9 The two contributions were predicted with positiv
and negative signs, respectively. It is not clear to which
tent the two terms cancel or which one is possibly predo
nating in which energy region. Some of us have shown9 that
an f xc of the form f xc52a/ur2r 8u, wherea is simply a
material- and screening-dependent constant, describes
continuum exciton effects in the optical spectrum of sim
semiconductors when self-energy corrections are already
cluded in the independent-quasiparticle polarizability, b
0163-1829/2003/67~4!/045207~5!/$20.00 67 0452
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that a constanta is not sufficient to yield at the same tim
the loss spectra or bound excitons.10

In order to improve this situation, one can proceed in t
directions. First, one can go beyond the simplest approxi
tion used in Ref. 9 either by including a frequency depe
dence ina or a more complicated spatial variation in the
kernel, or both. Second, one can make use of the freedo
change the starting point—i.e., the electronic structure wh
yields the independent-particle polarizability—and try to fi
out if a particular choice is the most suitable one in order
allow for a relatively simple associated kernel.

In this paper we address both questions. First, we de
an effective xc kernel fxc

eff , to be used in conjunction with a
given starting electronic structure, by requiring that it mu
yield the correct macroscopic dielectric function. As starti
points, we consider the cases of the DFT-LDA Kohn-Sh
electronic structure and of a quasiparticle electronic struc
as obtained in the GW approximation.11 We write the LR
component of f xc

eff in terms of the starting independen
~quasi!particle polarizability and of the full result including
self-energy corrections and the electron-hole (e-h)
interaction.2 We then calculate approximatively this LR com
ponent and show that it is non-negligible, complex, mate
dependent, and with a sizable frequency dependence th
displayed here for the first time in real materials.21 We dis-
cuss which of these features are important and in which c
text. Finally, we derive an exact expression for the mac
scopic dielectric function in a form that closely resembles
contact-exciton approximation,12 showing that the effective
contacte-h interaction is proportional to the LR compone
of f xc . We apply this expression to the case of bulk silic
and diamond and demonstrate that the dynamical LR con
bution alone is sufficient to obtain excellent agreement w
Bethe-Salpeter calculations and with experiment in the c
of both optical absorption and energy loss spectra.

The charge density induced by a time-dependent per
©2003 The American Physical Society07-1
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bation is described by the irreducible polarizabili
P(r ,r 8;t2t8). Within TDDFT, its time Fourier transform
P(r ,r 8;v) is given by

P~r ,r 8;v!5x (0)~r ,r 8;v!1E d3r1 d3r2 x (0)~r ,r1 ;v!

3 f xc~r1 ,r2 ;v!P~r2 ,r 8;v!, ~1!

wherex (0) is the independent-particle response function a
f xc is the xc kernel. Herex (0) is assumed to be the exa
Kohn-Sham polarizability, based on the band structure ca
lated using theexactxc potentialvxc . The latter being un-
known, some approximation to it must be used. As a con
quence, thef xc yielding the exactP in Eq. ~1! is then not the
true xc kernel, defined as the density functional derivative
the exact xc potential. Nevertheless, Eq.~1! can be used to
define a suitablef xc

eff : for any approximatexappr
(0) , there is an

f xc
eff which allows Eq.~1! to yield the exact polarizabilityP,

P5xappr
(0) 1xappr

(0) f xc
effP. ~2!

The exact f xc—i.e., the functional derivative of the x
potential—is recovered only whenxappr

(0) coincides with the
exact Kohn-Sham polarizability. Hence, if we use Koh
Sham DFT-LDA eigenvalues to calculate an approxim
xLDA

(0) , we have to introduce an effectivef xc
FLDA ~the super-

script means ‘‘from LDA’’; this kernel should not be con
fused with f xc

ALDA) to obtain the exact polarizabilityP from
Eq. ~2!. Analogously, if we start from an independen
quasiparticle polarizabilityxQP

(0)52 iGG and calculate the
Green’s functionG using quasiparticle~for example, GW!
energies, we can define another effective xc kernelf xc

FQP ~a
many-body analog off xc) through

P5xQP
(0)1xQP

(0)f xc
FQPP. ~3!

In fact the approach of Ref. 9, based on the GW band st
ture, deals withf xc

FQP.
Equation~2! can be solved forf xc

eff , giving

f xc
eff5xappr

(0)21
2P21, ~4!

which is analogous to a well-known equation13 that holds for
the exactf xc .

Using the relation«512vP (v is the coulombian poten
tial! and Eq.~4!, we obtainf xc in terms of the full dielectric
function « and of«appr

RPA512vxappr
(0) :

f xc
eff5@~«21!212~«appr

RPA21!21#v. ~5!

From Eq.~5! one can in principle calculate the effectiv
kernel. One has to determine«appr

RPA and to know a very good
approximation for«—for example, the result of a Bethe
Salpeter calculation. However, since Eq.~5! is a matrix equa-
tion involving microscopic quantities, one would need mu
more information from the Bethe-Salpeter equation than
sole macroscopic spectra that are usually calculated. Ra
we concentrate here on the LR component off xc

eff in a solid,
namely the head of its spatial Fourier transformf xc

eff(q,v)00,
where the subscript 00 stands for vanishing reciprocal lat
04520
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vectorsG5G850 and where the vectorq in the first Bril-
louin zone tends to zero. As we will show in the followin
this allows us to describe all the essential physics using o
quantities which have already been calculated in the pas

Keeping in mind that in the range of an optical spectru
of a semiconductor the screening is much larger than 1,
neglect 1 with respect to« and«appr

RPA in Eq. ~5!. This yields

f xc
eff~q,v!005@«~q,v!00

212«appr
RPA~q,v!00

21#v0~q!. ~6!

Both inverse macroscopic dielectric functions correc
account for local field effects. The neglected terms, estima
without local field effects, result in being hardly visible i
the scale of our figures.

Calculations of the dielectric functions have been carr
out for silicon and diamond as in Ref. 2. Figure 1 sho
q2f xc

FQP(q,v) for q→0. Since this quantity accounts for th
e-h interaction alone, while thef xc

FLDA kernel accounts also
for self-energy effects, it has a simpler physical meaning.
real part is negative in the optical range, describing an att
tive e-h interaction. It is, however, far from being constant
a function of v, since it changes by a factor of 3 goin
through the range of strong optical absorption. Here its
erage value is about20.2 in Si and20.6 for diamond, con-
sistent with the suggestion of Refs. 9 and 10. The imagin

FIG. 1. Long-range component of the many-body exchan
correlation kernelf xc

FQP. ~a! Si and ~b! diamond. The inset in~a!
shows the real part of the LR kernel of Si close to the plas
frequency.
7-2
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part is nonzero above the direct gap and smaller than the
part, with oscillations leading also to positive values f
diamond.

Figure 2 showsq2f xc
FLDA(q,v); it is generally smaller than

q2f xc
FQP, because of the partial cancellation of self-energy a

e-h interaction effects, while itsv dependence is stronge
Differently from the case off xc

FQP, the imaginary and rea
parts are comparable. Accounting for two effects, its int
pretation is less straightforward. Different results are o
tained for Si and diamond for both kernels, those related
diamond being greater in absolute value. In spite of th
q2f xc

FLDA of diamond vanishes for zero frequency, as a c
sequence of a complete cancellation of self-energy ande-h
interaction effects, which leads to equal BSE and LDA ra
dom phase approximation~RPA! static dielectric constants
The rich frequency dependence of the kernels conside
here is related, through Eq.~6!, to the variation~due toe-h
interaction and self-energy effects! of the longitudinale-h
excitations entering the inverse dielectric functions. Be
differences of causal inverse polarizabilities, they obey
Kramers-Kronig relation.14 This is also clearly visible in
Figs. 1 and 2, where the imaginary parts look like plus
minus an absorptive response function, while the real p
are similar to the dispersive counterparts.

Since it has been shown in Ref. 10 that an average s
a can yield good absorption spectra for the materials con

FIG. 2. Long-range component of the effective xc kernelf xc
FLDA .

~a! Si and~b! diamond. The inset in~a! shows the real part of the
LR kernel of Si close to the plasma frequency.
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ered here, but the samea cannotdescribe the plasmon, it is
particularly interesting to extend the range of frequencies
higher energies. However, the plasmon arises at frequen
where the macroscopic dielectric function is close to ze
and we have to make a different expansion than above:
assume that all the relevant dielectric functions are sma
than unity. This is true between 16 and 18 eV in Si.15 Hence
we expand Eq.~5! to first order in the dielectric functions
which yields results similar to Eq.~6!, but with the dielectric
functions instead of their inverse. The results for the t
kernels in Si are shown in the insets of Figs. 1~a! and 2~a!.
Their real parts are both shifted towards lower values, wh
makes now bothf xc

eff become completely negative, in contra
to the optical range. The imaginary parts ofq2f xc

FLDA and
q2f xc

FQP are both positive, of the order of 0.5.
Interestingly, the LR component of the two kernels is s

ficient in order to obtain very good spectra: if we consid
the matrix f xc

eff to be only f xc
eff(q,v)GG854pg(v)/q2 if G

5G850, and f xc
eff(q,v)GG850 otherwise, the equations

«M512
4p

q2
P̄00, ~7!

P̄5xappr
(0) 1xappr

(0) ~ v̄1 f xc
eff!P̄, ~8!

wherev̄ is the Coulomb potential with itsG50 element set
to zero,16 yield

«M~v!511
«M

appr~v!21

11g~v!@«M
appr~v!21#

, ~9!

where g(v)5 limq→0q2f xc
eff(q,v)/4p and «M

appr(v) is the
macroscopic dielectric function relative to the approximati
scheme used in Eq.~4!. Note that throughv̄ we have fully
included local-field effects everywhere.17 One can see the
close resemblance of Eq.~9! with the old contact-exciton
approximation.12 There, the contact electron-hole interactio
was described by a real constant, while here it is given b
complex and frequency-dependent quantityg(v). The
contact-exciton parameter is hence directly related to the
efficient of the LR divergence of the xc kernel.

The dielectric function of bulk silicon calculated accor
ing to Eq.~9! is plotted in Fig. 3. The small difference to th
result obtained solving the Bethe-Salpeter equation is du
the approximations made in deriving the LR components
the kernels and to the neglect of the microscopic com
nents. The similarity of these calculations to the BSE res
confirms that both approximations are very good. Simi
good results, not shown here, are obtained for diamond. T
implies that the kernels displayed in the figures are perfe
representative for the quantities one is searching for, and
most instructive to discuss the effects of their features on
resulting spectra. It turns out that starting from a quasipa
cle electronic structure allows one to use a simpler appro
mation to f xc

eff than starting from LDA: in the former case
indeed, a good spectrum is obtained by neglecting the im
nary part of f xc

FQP and by approximating the real part as
7-3
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suitable constant, as has been done in Ref. 9. Neither o
two approximations leads to satisfactory spectra when s
ing from the LDA. In this context it is also interesting t
note that a recently published so-called ‘‘EXX TDDFT
calculation18 finds good results for the absorption spectru
of silicon using again a static, long-range kernel~with a pref-
actor containing an empirical correction!: the starting KS
band structure in that case is in fact close to the GW on

The TDDFT energy loss spectrum of Si, calculated
cording to Eq.~9!, is shown in Fig. 4. When starting from
GW, the contribution of the long-range part is importa
since the GW spectrum is strongly shifted towards hig
energies, and the effect of the kernelf xc

FQP is to compensate
this shift and bring the plasmon back to the right positio
Since the ALDA spectrum~dotted line! is already rather
good,15 the improvement due to the kernelf xc

FLDA is not dras-
tic, but it is, however, significant. In particular, slightly wors
results are obtained if the imaginary part of the xc kerne
neglected.

In conclusion, we have derived expressions for effect
xc kernelsf xc

eff , in particular for the case that one starts w
an LDA electronic structure,f xc

FLDA , and for the case of a

FIG. 3. Imaginary part of the macroscopic dielectric function
Si. Solid line: including the electron-hole interaction by solving t
Bethe-Salpeter equation, as in Ref. 2; Dashed line: calculated
cording to Eq.~9! using xQP

(0) and f xc
FQP. Dotted line: calculated

according to Eq.~9! but usingxLDA
(0) and f xc

FLDA . Triangles: experi-
ment ~Ref. 19!.
ni
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quasiparticle calculation,f xc
FQP. Both kernels are complex

and have a sizable long-range component with an impor
v dependence. We have established a link to the old cont
exciton approach with an effective, complex, and frequen
dependent, on-site electron-hole interaction. This relation
lows for a quick calculation of the spectra starting from t
independent-~quasi!particle ones. Calculations carried out fo
bulk silicon and diamond yield very good agreement w
experimental absorption and energy loss results. This w
has allowed us to point out which are the important para
eters of the respective kernels and their effect on the spe
Therefore, it opens the way for a well directed search
effective exchange-correlation kernels and efficient calcu
tions of electronic spectra.
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The calculations have been done using the codes LSI-CP
ground state, DP for TDDFT, LSI-GW for GW and EXC for
Bethe-Salpeter calculations ~http://129.104.22.18/codes
codes.html!.
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FIG. 4. Loss function of Si: Circles: experiment~Ref. 20!. Solid
line: BSE result~Ref. 15!. Dotted line: ALDA result. Dashed line
result of Eq. ~9! using f xc

FLDA . The calculated curves embody
Lorentzian broadening of 0.75 eV.
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