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A method is presented which is able to interpolate between spectra depending parametrically on one variable
and obeying a sum rule. This enables the description of experiments with a finite resolution in that parameter
because integrals over certain parameter ranges are easily obtained, as for instance in the case of inelastic x-ray
scattering with finite resolution in momentum transfer. Beyond the sum rule, the method does not use further
assumptions about the physics of the system. It is applicable to a wide range of spectra as for instance the
dynamic structure factor or the dielectric function for different moduli or directions of momentum transfer,
absorption spectra for different alloy compositions or for a range of nanocrystal sizes, probability distributions,
etc. The method is expected to be useful not only in the simulation of experimental spectra but also in
calculations where the determination of certain spectral quantities is numerically cumbersome. A code carrying

out the interpolation is provided.
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I. INTRODUCTION

Many spectroscopic experiments investigate spectra that
depend parametrically on some quantity, for instance, on the
momentum transfer q in inelastic x-ray scattering (IXS) (Ref.
1) or in electron energy-loss (EEL) spectroscopy,” and which
obey certain sum rules. As the q resolution of any experi-
ment is necessarily finite, the spectra obtained represent an
average over the desired quantity within the q range deter-
mined by the resolution.’

Therefore, in general, each experimental spectrum is an
integral of the form

fexpl(q,w)=fdq’f(q',w)g(q—q’), (1)

with some weight function g(g). The calculation of the mea-
sured spectrum requires, therefore, the knowledge of the ¢
dependence of the functions f(g, ) or at least their values on
a very fine ¢ grid in order to calculate the integral Eq. (1)
numerically.

A similar situation occurs for instance when the absorp-
tion spectrum of a sample of nanocrystals is measured. In
this case, the size of the nanocrystals takes the role of the
parameter g, and the measured spectrum represents an inte-
gral over the size-dependent spectra of the nanocrystals in
the sample, weighted by the size distribution.

On the other hand, calculations, today often within the
framework of ab initio approaches,* usually calculate the
spectra for one fixed q or one fixed size of a nanocrystal at a
time. The state-of-the-art calculation of those spectra is nu-
merically often very demanding. For instance, the calculation
of one high-precision energy-loss spectrum in silicon for
large momentum transfers using time-dependent density-
functional theory (TDDFT) in the adiabatic local-density ap-
proximation (TDLDA) (Ref. 5) takes about 7 h on a NEC
SX8. The calculation of spectra using more sophisticated
theoretical approaches, as for instance self-consistent GW
calculations, for more complicated materials, as for instance
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V0,,° can easily take 1 or 2 orders of magnitude more time.
On the other hand, the calculation of an absorption spectrum
of a germanium nanocrystal of 83 atoms using TDLDA in
time evolution with the octopus code’ takes about 1 day on
32 processors once the ground-state calculation is done.
Moreover, the standard calculation of response functions in
solids is often restricted to certain momentum transfers q by
the discrete sampling of the Brillouin-zone.

The calculation of many curves on a fine parameter mesh
is therefore often not practicable. Hence the question arises
as to how curves for intermediate parameter values can be
obtained. A straightforward average, for instance, between
two calculated curves does not give a good result. In particu-
lar changes in a peak’s position are not accounted for. But
even in the case of peaks centered at the same point, the
average does not yield the correct result expected for inter-
mediate parameter values.

Considerations about changing spectra are, therefore, of-
ten based on a fitting of separate (Gaussian, Lorentzian, etc.)
contributions to the spectra, the fitting parameters of which
may afterward be interpolated. However, this amounts to as-
sumptions about the physical nature of the spectra. In par-
ticular for more complicated spectra, the complexity can be
prohibitive for the finding of reasonable fits. On the other
hand, approaches starting from the physical nature of the
system under study can be devised which treat interpolation
on the basis of the physical description.® These methods are
necessarily restricted to a given system.

Any procedure providing interpolation must be able to
shift peaks and spectral weight. This would obviously be
accomplished by an interpolation along the abscissa (energy
axis for spectra). However, this problem does not lend itself
to a simple solution because, while for a given energy w the
spectrum f(g=const,w) is unique, for a given value of
f(g=const, w) there is no unique value of w associated. This
bars any simple attempts of interpolation. In other words, the
problem is that the spectra are not monotonous.

On the other hand, a monotonous function to be interpo-
lated can be the solution of this problem. Moreover, many
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spectra obey certain sum rules. We combine these two points.
The proposed method solves the problem by calculating a
distribution-function-like monotonously increasing function’
integrating the data, used thereafter for an interpolation in
the w direction. (Due to the linearity of the integration, “nor-
mal” interpolation along the ordinate would just reproduce
the averages.)

The present paper describes the idea and the procedure in
Sec. IT while in Sec. III the behavior in certain limiting situ-
ation is discussed using model spectra. In Sec. IV, examples
are presented for the method applied to real data.

II. IDEA AND METHOD

We consider curves which obey a sum rule of the form

f f(g,w)dw = const, (2)
0

where f(q,w) are functions of w which depend parametri-
cally on ¢q. If q is a vector, as in the case of the momentum
transfer, we choose ¢ as the modulus of q in a given direc-
tion. However, the method should easily be extendable to
three-dimensional q space. The curves to be interpolated
have to be positive definite. Sum rules of the form

f flg,w)dow=C(q), (3)
0

where C(g) depends only on ¢, can easily be brought into
form (2) using the dependence C(g).

Examples are the dynamic structure factor S(q, w) in IXS
with the sum rule (a.u.) (Ref. 10)

J S(q,0)w do=q¢*/2, (4)
0

which depends parametrically on the momentum transfer q,
or the electron energy-loss function —Im &7'(q, w) which fol-
lows the same sum rule but integrates to a q-independent
constant. Another example is the imaginary part of the di-
electric function for, e.g., changing size of nanocrystals or
changing composition of alloys. It obeys the generalized
oscillator-strength sum rule'!

f‘” o Im g(w)dw = g(w[e,ff)z, (5)
0

and the screening sum rule

f D e(@)dw= Te—1). 6)
) 2
where w;ff is the effective plasma frequency and
£,=Re e(w=0) is the (high-frequency) dielectric constant.'!
In the case of, for example, nanocrystals of different sizes,
the radius r can be used for the general parameter ¢. In the
sum rule, we have now &,(r). Knowing &,(r) for the radii of
the inputs, &.,(r) can then itself be interpolated in order to
obtain &.(r) for the radii to be calculated using the present
method.
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FIG. 1. (Color online) Illustration of the method—the integrals
Eq. (7) for two different input curves (thick lines) and indication of
the interpolation direction. Also shown are a number of interpolated
curves (linearly between the two inputs) for the integrals and the
resulting spectra.

The following procedure accomplishes the interpolation
for arbitrary intermediate values of the parameter g:

(i) Using the factors C(g) of the sum rules, the curves are
rescaled such that the sum rule of the form Eq. (2) is recov-
ered.

(ii) Then the integral

F(q,0) = f flg,0")dw', (7)
0

which for w— gives the sum rule is calculated for all w.
This results in monotonously increasing functions F(g,w)
which for w— < attain all the same value, i.e., which all span
the same range along the ordinate (cf. Fig. 1).12

(iii) The integrals are then interpolated along the w direc-
tion [i.e., for each fixed F,w(F,q) is interpolated along the
parameter ¢g| corresponding to the desired ¢ values as indi-
cated in Fig. 1. This interpolation shifts spectral weight and
in this way takes care of the shift of peak positions. The
interpolation is done pointwise as explained below in Sec.
IT A, using linear or higher-order polynomial interpolations
or splines.

(iv) The interpolated curves are then differentiated in or-
der to get the desired spectra. Depending on the sum rule, the
inverse scaling according to the parameters of the sum rule
C~'(g) must be applied for the respective ¢ values of the
interpolated functions.

With the same approach, extrapolation to g values beyond
the limits given by the input curves is likewise possible.

We note that the problem can also be stated in terms of a
function f of two variables ¢ and @ which is known along
lines of fixed ¢ (Fig. 2). The task consists in providing
f(g,w) over the whole (g,w) plane. We mention that the
standard approaches for interpolation of two-dimensional
(n-dimensional) functions do not yield the physically mean-
ingful results obtained by the present method.

Within the picture of the surface over the (¢, w) plane, the
method that we present can be interpreted as follows. For the
integrals F(g=const.,w) of the input spectra, the intersec-
tions with the plane F(q,w)=const. parallel to the (g,)
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FIG. 2. (Color online) Interpretation of the interpolation method
within the picture of a function f of the two variables g and w.
Shown are the input spectra f(q, ) for three values of ¢ (thick red
lines), as well as two interpolated spectra (thin black lines), along
with the integrals given with the corresponding line types. The blue
dotted line shows the (here quadratic) interpolation between the
intersections of the integrals with a plane F(q, w)=const. within this
plane. The curves used for this schematic figure are the EEL spectra
shown in Fig. 10. We show as f(¢, ) the spectra multiplied by o,
as well as the integrals F(q,w) of this quantity. The intermediate
spectra have been calculated using the present method.

plane are interpolated within this plane. It is here where we
can choose linear, polynomial, etc. interpolation, depending
on the situation and inputs. This is shown in Fig. 2 for one
plane. Carrying out the interpolation for all planes F(q,®)
=const. intersected by the integrals, the values of the inte-
grals of intermediate g values are found which then yield the
interpolated spectra.

This three-dimensional picture is useful for the under-
standing of the method we present. The latter yields the in-
terpolated spectra without the complication of three-
dimensional space. Moreover, the method can easily be
extended to three-dimensional parameter space ¢, where the
three-dimensional representation looses its highly intuitive
character.

A. Implementation

A code using the procedure described here is available.'?
The idea is implemented as follows: after a possible rescal-
ing, the data are first integrated. The interpolation of the
integrals along the energy direction is done by exchanging
abscissa and ordinate and, thereafter, interpolating between
the integrals. This interpolation is done pointwise, using ei-
ther linear or quadratic interpolation (first-order or second-
order Taylor expressions with finite difference expressions
for the coefficients), or cubic or Akima splines. The interpo-
lation is implemented using the gnu scientific library (gsl).'*
The exchange of abscissa and ordinate corresponds to an
inversion F(g,w)— w(g,F). For the interpolated integrals
we exchange again abscissa and ordinate which gives the
integrals that are finally differentiated to obtain the desired
spectra. These might have to be rescaled according to the
scaling at the beginning. For a typical spectrum, the program
runs a few seconds.
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FIG. 3. (Color online) Interpolation (linear) between input Lor-
entz curves (thick black and green) with parameter y and center wy
as indicated. The interpolated curve in the middle coincides pre-
cisely with the Lorentz curve (thick red) calculated for comparison
with these intermediate parameters. (The interpolated result is given
by the crosses to make the equality apparent.) Also shown are a
number of interpolated curves (thin lines). The simple average of
the input curves (blue dashed) gives a double-peak structure far
from the desired result.

For the moment, the method works along one direction of
g, i.e., for a scalar parameter. The generalization to three-
dimensional q space is not expected to present any difficulty.

III. ACTION ON MODEL INPUTS

A. Sum of peaks with equal spectral weight

The spectra used here have been created as sums of peaks
(Gauss, Lorentz) in such a way that each single peak gives
the same spectral weight to the sum-rule integral of Eq. (2),
i.e., for every peak the integral [° f(w)dw gives the same
value, with a and b being the lower and the upper limits of
the peaks. In order to investigate the behavior of the method
for a single peak which changes its position and its broaden-
ing, we show different Lorentz curves whose parameters are
changed linearly as shown in Fig. 3. This corresponds to a
linear parametrization of the parameters y and wy of the
Lorentz function v/ 7 [(w—wy)>+y?] with respect to some
parameter g. Throughout the paper we use a unitless energy
scale for the model curves. In all the figures, input refers to
the curves used as input for the interpolation procedure, com-
pare refers to curves created for comparison using the corre-
sponding parameters, and interpolated refers to the result of
the interpolation.

The curve created with the intermediate parameters, and
the one using the present interpolation procedure coincide
with high precision. The method thus reproduces the change
in both peak position and broadening. Problems might arise
when the integrals of Eq. (7) cross, which is discussed below.

As an illustration of the fact that a simple average does
not yield a reasonable approximation of intermediate curves,
the average of the two input curves, a double-peak structure,
is also shown in Fig. 3.

B. Crossing of peaks

Now we look at the situation where we have two peaks of
different broadening at two energies. We face here a problem
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FIG. 4. (Color online) Schematic of the w-g plane showing the
two possibilities to interpolate between two spectra exhibiting two
peaks each, indicated by the asterisks (red). On the one hand, the
peaks can move without crossing, as indicated by the green solid
arrows. At all spectra for intermediate ¢, there will be two peaks.
On the other hand, the peaks may cross according to the blue dotted
arrows.

which always arises in the interpolation between two differ-
ent functions at two points—there are two ways to connect
them. In one case, the two functions cross while in the other
they do not.

This crossing has its equivalent in the exchange of the
peak positions as illustrated in the schematic in Fig. 4. The
situation of different g with two peaks each is illustrated by
the inputs (thick black and dashed green) of Fig. 5 which are
each a sum of two Lorentz peaks with different widths. Two
situations are now possible for the interpolation: either the
two peaks exchange their position, or they stay at their place
and each one goes through intermediate values of the width.
The two situations correspond to two different parametriza-
tions of f(g,w): In the non-crossing case (Fig. 5), the broad-
enings y(q) change linearly with g while the centers w are
kept constant. In the crossing case, the positions wy(q)
change linearly with g while the widths y remain constant.

The non-crossing behavior (Fig. 5) is what the method
(linear interpolation between two inputs) does when used

14 T T T T
L — input 01:0.3, 02:0.8 "\
12+ — - input 6,=0.8,0,=0.3 /)| E
—— comp. (51=0.6, 0'2=0.6 ! \\
10F x interpd.c,=0.6, 6,=0.6, \ —
I \
B8
= Gaussians,
m01=5.0, a)02=8.0
L ZGEN\
0.4 B \ -1
L ] \
= / \
0.2 Z N N // \
0 0 1 : e 1 \
4 5 Energy ® 8 9

FIG. 5. (Color online) Spectrum made of two peaks which
change their broadening. The dashed green and the thick black lines
are the inputs, and the thin lines are the curves obtained for inter-
mediate ¢ using the interpolation method (linear interpolation). o
and wq; refer to the first and the second peaks, respectively. The
arrows are a guide for the eyes to clarify the direction of the change
in the peaks (black — green dashed).
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FIG. 6. (Color online) Same situation as in Fig. 5 for the two
outer input spectra (thick black and red) but with a third input
spectrum (thick green) created using the intermediate parameters
which forces a crossing of the peaks. o; and w; refer to the first
peak and the second peak, respectively. Panel (a): second-order
polynomial interpolation using the two outer (black and red) and the
middle (green) peaks as inputs. The interpolated curves (dashed) for
two g are compared with the result created for these values (solid).
Panel (b): second-order polynomial interpolation between the black
and the middle green inputs as in (a), with an additional input
between the two (red).

without any further constraint. However, by providing a third
input curve at the intermediate position, the method can also
be forced to simulate the exchange of peak positions. This is
shown in Fig. 6(a). Due to the parametrization, the middle
input curve is the sum of two peaks with the same w, which
results in only one peak. The interpolated result shows that
the two peaks move roughly in the right way but the inter-
polated curves show rather large deviations from the curve
calculated directly using the interpolated parameters.

A possible solution, shown in Fig. 6(b), is to use another
input curve between one of the outer and the middle curve.
The result, reasonable for a limiting situation such as the
crossing, provides now interpolated curves which differ
much less from the spectra calculated for comparison.

The deviations here appear to be a shortcoming of the
interpolation under the constraint given by the curve at inter-
mediate position. This sort of shortcoming appears to be con-
nected with the situation where the integrals of Eq. (7) cross,
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FIG. 7. (Color online) (a) Input spectra composed of two Gaus-
sians with parameters as indicated, o; and wy; referring to the first
peak and the second peak, respectively. The two outer curves (black
and green) are taken as input for the (linear) interpolation, and the
result (red dashed) is compared with a curve created for comparison
using the corresponding parameters (red solid). Also shown are the
integrals according to Eq. (7) showing the crossing (corresponding
colors, thin lines). (b) Blowup of the region of the crossing showing
the integrals of panel (a). Colors as in (a).

discussed below. Moreover, the result in this case depends
rather strongly on the interpolation chosen (linear or qua-
dratic Taylor, splines, etc.).

C. Crossings of the integrals

Figure 7 shows a situation which presents a problem. The
input curves are two double-peak structures of two Gaussians
each with parameter values as indicated in the figure. In this
case, the integrals F(g, w) of Eq. (7) cross. Around this point,
the linear interpolation between the integrals does not pro-
duce a good interpolated curve. This is shown in Fig. 7
where between w=5.5 and 7.5 a serious deviation of the
interpolated curve is found compared to the curve created
with the corresponding parameters. This can be seen in the
integrals as well. In Fig. 7(b) the enlarged region of the
crossing demonstrates that the interpolation between the in-
tegrals, linear in this case, does not represent the situation
well.

In general, the crossings of the integrals give rise to prob-
lems in certain situations. Concerned are situations such as
the one shown in Fig. 7(b) where the crossing occurs under a
rather large angle and one of the integrals is almost horizon-
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FIG. 8. (Color online) Input spectra (thick green and black) as
sums of peaks which give different weights to the sum rule inte-
grals. While the two parts of the peaks which do have the same
weight behave roughly like in Fig. 5, a third peak carries the weight
from one side to the other (red dashed).

tal after the crossing. A crossing under a small angle does not
create these problems.

Technically, the treatment of such points depends strongly
on the interpolation method used. In particular in the case of
quadratic Taylor interpolation using three input integrals, the
crossings present a problem when the integrals of all three
inputs cross at roughly the same point. In these cases, the
result can be even more distorted than the example in Fig. 7,
with a singularity-like peak added to the interpolated curve.
This happens because the interpolation is done pointwise
without a stipulation that the output curves have the same
monotony as the inputs. However, inspection of the results
reveals very quickly the few points where this problem oc-
curs. In practice, these points should be treated with the most
convenient interpolation method (probably pointwise linear
between the inputs). The use of more inputs to interpolate
between will also solve the largest part of the problem.

Another way of approaching this problem is by adding a
constant to the input curves. In this way, the angle under
which the integrals cross is reduced, and the almost horizon-
tal part of the lowest integral in Fig. 7(b) has a larger slope.
The result of this procedure is that the deviations of the in-
terpolated results from the “true” curves occur in different
places. The rest of the curves is only slightly changed. (Tests
with input spectra that do not exhibit problems such as the
crossing indicate that the use of such a small offset leads to
only very small changes.) Therefore, adding the shift may
help in obtaining good results by doing the interpolation for
different parts of the spectrum one after the other.

D. Peaks that do not separately fulfill the sum rules

Now we consider the situation when the model spectrum
is composed of peaks which do not each contribute the same
spectral weight to the sum rule. Figure 8 shows model spec-
tra that contain two peaks which change their widths such as
in the case before, but now one of them gives twice as much
weight to the integral as the other. The procedure acts in such
a way as if the larger peak was composed of two peaks: one
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FIG. 9. (Color online) Interpolation (linear) between the loss

function of the homogeneous electron gas for r,=4.0 and momen-
tum transfers as indicated.

which is left in place such as the one above in Fig. 5 while
another peak moves between the two to “carry the spectral
weight” from the left to the right. Inspection of the expected
result, as in the case of two peaks exchanging their position
above, must determine if this is the desired behavior. The
hypothetical situation of two separated peaks which ex-
change spectral weight—untypical for spectroscopy—is
hence not described by the present procedure.

IV. REALISTIC EXAMPLES

A. Electron energy-loss function of the homogeneous electron
gas

We show here the application of the procedure to realistic
physical spectra. We first treat the electron energy-loss func-
tion of the homogeneous electron gas. In Fig. 9 we show the
linear interpolation between two relatively small as well as
between two larger momentum transfers ¢ using the sum rule
Eq. (4). As the system is isotropic, the modulus of the mo-
mentum transfer is sufficient as parameter. The agreement is
good, especially for larger momentum transfer.

B. Electron energy-loss function of silicon

As a second example, Fig. 10 shows a series of EEL
spectra —Im £7!(q,w) of Si calculated in the TDLDA.> In
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FIG. 10. (Color online) Interpolation (second-order polynomial)
between loss spectra of bulk silicon calculated within TDLDA with
inclusion of lifetimes (Ref. 5) for three q values (thick black, red,
and green lines). The intermediate calculations (thin red and blue)
are compared with the interpolated curves (dashed red and blue).

this case, the parameter ¢ of Eq. (4) is the modulus of q, and
the latter is parallel to the [111] direction. The interpolation
is carried out over a rather large range of q (half the exten-
sion of the Brillouin zone in this direction), and the interpo-
lated curves for intermediate values of ¢ are compared to
curves which have been calculated directly. The agreement
and, therefore, the quality of the interpolation are very good.

This example shows that the spectra do not have to be
known over an energy range large enough to satisfy the sum
rule. It is sufficient if the spectra are normalized and the sum
rule is known. This situation appears often in calculations
where the normalization factors are correct but the energy
range to be calculated is restricted because the calculations
are numerically heavy.

C. Dielectric function of nanocrystals and alloys

Another application of the method can be the calculation
of spectra for a size distribution of nanocrystals in a sample.

20 [ T T
15
g
w%
é Ge 83 (input)
— Ge 239 (input)
5 — Ge 147 (for comp.) ]|
— - interp’d Ge 147
O 1

Energy [eV] 5 6

FIG. 11. (Color online) Interpolation (linear) between the imagi-
nary part of the normalized dielectric function of Ge nanocrystals
(Ref. 15) for two sizes, Ge 83 and Ge 239 (solid lines as indicated).
The numbers indicate the number of Ge atoms in the nanocrystal.
The calculation of the intermediate size Ge 147 (thin blue) is com-
pared with the interpolated curve (dashed red) for the same size.
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FIG. 12. (Color online) Interpolation (linear) between the imagi-
nary parts of the dielectric function of the Ge,_,Si, bulk alloy of
different composition x. The measurements used for input and com-
parison are from Ref. 16.

In order to calculate the spectra of the size distribution, one
needs the spectra for all sizes of nanocrystals intermediate to
a given set of calculations. The spectra shown in Fig. 11 are
the imaginary part of the normalized dielectric function of
nanocrystals (cf. Fig. 6 of Ref. 15) for three Ge nanocrystals.
The parameter which the sum rule depends on is now the
radius r of the nanocrystal.

We use the screening sum rule [Eq. (6)] with the values of
£,(r) taken from the same calculations. Equation (6) has
now the form of Eq. (3), with f(g,w)—Im &(r,w)/w and
C(g) — 7 [e.(r)—1]/2. The &.(r) for the interpolated curve
has been linearly interpolated between the values corre-
sponding to the two inputs. The result is evidently satisfac-
tory, in particular when the interpolated curves are used for
an averaging over a size distribution.

The last example that we present (Fig. 12) shows again
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the dielectric function, this time for the Ge;_.Si, bulk alloy
with different compositions x. The experimental values are
taken from Ref. 16. The &,(x) is again interpolated linearly,
as £,(x)=16.2—4.5x.

V. CONCLUSION

In conclusion, we present a method which interpolates
between spectra belonging to different values of some pa-
rameter, and which obey a sum rule. No assumptions about
the underlying physics have to be made beyond the validity
of the sum rule and the positive definiteness of the spectra.
For single Gaussian or Lorentzian peaks, the dependence on
the values of their parameters is precisely reproduced. Prob-
lems arise in cases where the integrals cross under large
angles, in particular in cases where two peaks exchange their
positions. If the spectra are made of peaks which do not all
give the same weight to the sum rules, the procedure treats
them roughly as a sum of such. The procedure is applicable
to a wide range of spectra. A code which performs the inter-
polation is made available.
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