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The generalizedXae method, based on a local, energy-independent operator derived from the exchange-
correlation potential of the local-density approximation by changing the weight of the exchange term, is
revisited with the aim of building an optimized starting point for band-structure calculations withid \itie
method. We find that the optimal choice coincides with the unmodified local-density approximation potential,
i.e., with = 2/3. Moreover, we show that the use of #a method to mimic the self-energy effects in the
calculation of absorption spectra leads to worse results than the simpler “scissors operator” approach.

[. INTRODUCTION exchange-correlation potential. This is based on the fact that
the Kohn-Sham equations

Ab initio calculations based on the density-functional
theory in the local-density approximatibfDFT-LDA), and
the subsequent corrections accounting for self-energy effects [Ho+ VEPA(N) 1 hi(r) = € by (1) (1)
computed in theGW approximation within the many-body
guantum field theory, are now considered as a standard way
to describe the electronic structure .Of condensed-matter SYfave the same structure of the guasiparticle equations of the
tems. The method can be summarized as follows: The f'rSﬂ/IBQFT
step is the solution of the DFT-LDAKohn-Sham equa- '
tions, a set of single-particle equations to be solved self-
consistently. It is well known that the results obtained in this
way yield directly only the ground-state properties, such as _ 3y PN (N — o
lattice parameters, elastic constants, etc. In fact, density- HO¢'(r)+f Frnria)gr=adn @
functional theory, as initially formulated, is a ground-state
theory; excited states are not directly accessible. Neverthe-
less, the calculated Kohn-Sham eigenvalues, which have nand that the difference between the expectation values of the
direct physical meaning, are often interpreted as singleself-energy and of the exchange-correlation potential is of
particle excitation energies, and found in quite a good agreethe order of 5% or 10%. The results obtained in this way are
ment with experimental quasiparticle energiesy., photo- usually in excellent agreement with experimental ddta.
emission spectja This implies, however, some drawbacks, Moreover, it was found that in bulk semiconductors the KS
the most important one being an evident underestimate of theigenvectors reproduce extremely well the true quasiparticle
band gaps in semiconductors and insulators. For this reasomave functiond. This justifiesa posteriorithe use of first-
excited-state properties like optical-absorption spectra are ofsrder perturbation theory.
ten not well described in DFT. PerturbativeGW proved to give good results in many

A proper description of excited-state properties is pro-cases, but reveals very heavy for complex systems like sur-
vided by the many-body quantum field thedBQFT), or  faces or clusters, due to the large computational effort
Green’s-function method, where a central role is played byieeded in the evaluation of the self-energy matrix elements.
the self-energy (r,r’, ), a nonlocal, energy-dependent op- For large and complex systems, the possibility to mimic the
erator. The central equations of the theory, known as theelf-energy operator with a local, energy-independent poten-
Hedin equation$,form a complex system of five integro- tial closer to3 than V:>* is clearly an interesting issue.
differential equations to be solved self-consistently. The soMoreover, the solution of KS equations containing such a
called GW approximation, in whicht =GW, i.e., the self- modified potential could be used as a better starting point in
energy is written as a convolution of the one-particle Green’ss subsequent evaluation of self-energy corrections within the
function G with the screened Coulomb interactiv¥ is ob- GW scheme. A possible form for this local and energy-
tained from Hedin’s equations by neglecting vertex diagramsndependent potential, following the maximum simplicity
beyond the bare vertex. The work of Godby, Sthtuand  criterion, may be obtained within the generalizéa ap-
Shani and Hybertsen and Lodiedemonstrated the useful- proach, i.e., by modifying the weiglt of the exchange term
ness of theGW scheme in practical calculations for real in the LDA exchange-correlation potential. This method is
semiconductors. They start from the Kohn-Shid(®) DFT-  clearly inspired by the original formulation of Slafewhere
LDA electronic structure, and evaluate perturbatively self-a “local exchange” potential was introduced in an approxi-
energy corrections to KS eigenvalues by computing the exmate Hartree-Fock scheme. After the development of DFT, it
pectation values of G-PAWRPA—VLIDA) "whereVi>* is the  became clear that Slater's local exchange potential overesti-
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mated by a factor of 3/2 the DFT-LDA exchange potential. « 3 ) s
However, when applied to solids, Slater’s exchange, at vari- Vi“(n(r))=— az@ﬂ n(r))==. (6)
ance with the DFT-LDA exchange, generally yields energy

gaps in good agreement with experiments. . In this expressiong must be considered an adjustable pa-
In this paper we explore the possibility of reproducing rameter, Physically, the exchange interaction lowers the
GW eigenvalues in semiconductors by treating the weighjjieq hands with respect to the empty ones, because it is
(a) of the exchange potential as an adjustable parameterarger where the density is larger. Therefore, choosing
Diffe_rently from_ Slater’s original apprqach, we keep the COr|arger than 2/3(the DFT-LDA value yields larger energy
relation potential as calculated within the LDA. We take gaps, correcting the well-known LDA underestimation of the
bulk GaAs as a test case. _ _ experimental band gap. Hence, one can hope that a general-
_ The problem to solve is how to determire If one i jzedX« could be used to obtain a band structure closer to the
interested in obtaining good gafihat is, in agreement with - Gyy results than the standard LDA one. We stress the fact
GW calculations and experimepfsthe natural way is 10 that we are interested only in the band structure, and not in
choosea by fiting the energy gaps at some high-symmetryy ound-state propertie@s total energies and lattice con-
points in the Brillouin zone. This has been our first approachstam3 which might be given incorrectly by a self-consistent
We founda of the order of 1.1, where=1 is Slater’'s, and  x, calculation.
a=2/3 is DFT-LDA. However, the gaps do not increase As addressed in the Introduction, two strategies can be
equally, as happens going from LDA@W. A further short-  fo|iowed in the choice ofv: in the first, its value is chosen by
coming of the approach is that the absorption spectrum cakjmply minimizing the difference between the resulting LDA
culated using the adjusted value has a reduced intensity gnq Gw gaps. In the second, one can choose d¢healue
with respect to the LDA and experimental spectra. Thisyhich minimizes the differences between the diagonal ma-
point, related to thé-sum rule, is discussed in Sec. IIl. trix elements of theXa exchange-correlation potential and
If, on the other hand, one hopes to produce a better starfpose of theGW self-energy operator, i.e., minimizing the
ing point than DFT-LDA for self-energy calculations, as pro- perturbative corrections to théa electronic structure.
posed by Del Sole, Reining, and Godbthe quantities to be GW corrections to theXa electronic structure can be

reproduced are not the gaps, but rather the expectation Va'“@émputed along the same line of Refs. 3 and 4. Considering
of the exchange-correlation self-energy. This approach is dgne X modified Kohn-Sham equation,

scribed in Sec. IV. Quite surprisingly, the best results are
obtained fora close to 2/3, that is using the LDA exchange-

correlation potential. [Ho+ Vig(n1¢(r)=e“$“(r), (7

and comparing it to the true quasiparticle equati@n first-
order corrected quasiparticle energies can be written as

Il. THEORY
The bare exchange energy per particle of the homoge- « (HF3 (€)= VI )
neous electron gas at densityis =€+ 2 : 8)
I
3 with
eEG(n)=— E(swzn)lf% (3)
. . Xa dz Xa
In the LDA approximation, the exchange potentiappear- Zi=1—(¢; del o |67 ), 9)

ing in the Kohn-Sham equations hence i

5 where the perturbative part of the Hamiltonia®, V;(c“), is
VXKS(n(r))=—J d n(r)e7E(n(r)) considered to be small.
on The self-energy operator in tH@W approximation is

0
=e-on(n)+n(r) - e~n(r) . _
n E(r,r’,w)zﬂ do’ e W(r,r', o )G(r,r' o+w’)

=—%@w%u»”. (@) (10

(6 is a positive infinitesimal
So the KS exchange is exactly 2/3 of the Slater local Tg constructs, the free Green’s functio® can be com-
exchang puted using the eigenvalues and eigenfunctions of the LDA,
or those from arX« calculation:

3
- _ /
Vilnl=— 537"~ (5) Xa(r) gk

0—€*ib

GXe(r,r,w)=22, (12)

In the spirit of a phenomenologica« method, we are
then lead to consider a generalized “exchange potential,”
taking « times the Slater exchange Similarly, the screened Coulomb interaction,
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W= S_lVC, (12) -2.0 T T T T T T T
EXC
obtained from the random-phase approximati&PA) di- ‘? —4or ]
electric functione=1-Vx®, requires the calculation of %
the independent-particles polarizabilipy®: e e ———¢ ]
§ kln+EH
g -sop 1
XO(r,r',w)=22 (fi—f;) E.
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FIG. 2. Different components of the total energy per GaAs unit

hich b din th ing f hceII versus « (atomic unit. Circles: total energy; squares:
which can be computed In _t e same way starting from t Féxchange-correlation energy; diamonds: kinetic plus electrostatic
LDA or from the X« electronic structure. In both cases, as N energy.

Ref. 3, every matrix element &/;(w) is explicitly calcu-

lated at two imaginary energies, then its energy dependenagn is done using ten special points of the Monkhorst and
is fitted to a plasmon-pole model along the imaginary axis. pack typé® in the irreducible Brillouin zondlBZ). All the

We calculate the DFT electronic structure of bulk GaAscalculations are performed at the LDA theoretical lattice con-
using a dynamical minimization approagthe Car-Parrinello  stant(10.51 a.u.

method, ab initio norm-conserving pseudopotentials, and a
plane-wave basis set. The pseudopotentials used are of the
Bachelet-Hamann-Schter typd in a fully separable
Kleinman-Bylander representati§i-he parametrization and In this section, we adjust the parametewith the aim of
cutoff radii are the default ones of Ref. 9, tailored to avoidobtaining energy gaps as close as possible toki¢ gaps.
ghost-states probleni8.We use the Ceperley and Aldér  Figure 1 shows the influence ef on the direct band gaps at
LDA exchange-correlation energy functional, as param+k pointsT', X, L. Taking as a reference the gaps obtained
etrized by Perdew and Zungkrin the Xa calculation, we  with «=2/3, we find a widening which increases linearly
simply allow the coefficientx of the exchange term to take with «, the slope being different for the differektpoints.
values different from 2/3the LDA one. We keep the stan- Hence, the effect is different with respect to A& method,
dard, LDA pseudopotentials throughout all the calculationwhere the conduction bands are almost rigidly upshifted by a
This is justified by the fact that the modified exchange termconstant valudthe so-called scissors operatofhe almost
has the limited scope of mimicking th@W corrections to  perfect linearity of the effect suggests that the wave func-
the band structure of the solid, with no concerns about totafions are not significantly changed by a changerofhis is
energy. Moreover, the “wave-function stability” discussed confirmed by the behavior of the exchange-correlation con-
below suggests that using aw—generated pseudopotential tribution to the total energy of the system, as shown in Fig. 2.
would have only a small effect. The kinetic energy cutoff isThe total energy changes linearly witl, driven by the

18 Ry (corresponding to about 300 plane waves at a generalxchange-correlation term, while the kinetic plus electro-
point in the Brillouin-zong and the Brillouin-zone integra- static term remains constant.

In order to check this “wave-function stability,” we

IlI. RESULTS: GAP OPTIMIZATION

' ' ' T ' ' evaluated explicitly two different energy functiongi®., us-
1571 | ] ing a=2/3 anda=1) over two different sets of wave func-
E : : tions:_the firgt one obtained self-consistgntly fro.m the KS
2 .ol | 1 equations witha=2/3, the second obtained using=1
T (Slater exchange Table | shows the values of the total and
=]
% TABLE I. Exchange correlation and total energies of bulk
o 051 | ] GaAs, obtained using the Kohn-Sham exchange 2/3, KS and
§ I I the Slater exchangex=1, SL), evaluated both on the set of wave
Lo functions that minimizes the Kohn-Sham functiond (3 and
0o : l ] on the set of wave functions that minimizes the modified-exchange

06 07 08 09 10 14 12 13 14 functional (¢,-1). Energies are in eV/unit cell.

¢a:2 ¢a:1

FIG. 1. Band-gap widening with respect to the LD&= 2/3) XS °
value in bulk GaAs. Filled circles' point; filled squaresX point;  Exc —241 —245
filled diamondsL point. The empty symbols correspond to B&/  Exe —3.42 —3.49
widening, and are located on vertical dashed lines aithalues — Ef; —8.66 —8.65
which better reproduce th&W results (left dashed line: present E% —-9.67 —9.68

work; right dashed line: Ref.)3
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the exchange-correlation energies, obtained in the four case: 40 - - - - T - - - -
Clearly, the values are almost independent on the wave func ¢
tions used. In order to check if also the conduction bands are
“stable” with respect toa, we computed explicitly the su-

perposition between KS and Slater wave functions for the 25 L
first ten bandgfour valence and six conductibnwe found @ o0k
that the two wave function sets coincide within 0.1%. The £
situation is similar to that reported about the comparison 15

30 F

between LDA and5W wave functions in bulk semiconduc- 10k
tors (Ref. 4.

As shown in Fig. 1, the tru&W electronic structure can- St
not be exactly reproduced by any valueaflt is, however, 0 '

possible to consider the value which minimizes the mean o 1 2 3 4 S5 6 7 8 9 10

square deviation between te and theGW band structure

at the high-symmetrk pointsI’, X, andL. Considering the FIG. 3. Imaginary part of the dielectric function of GaAs. Solid

GW corrections calculated in the present work, we obtainine: using theXa electronic structure; dotted line: using ordinary

a=1.06, slightly over the Slater valuexE&1). A similar  DFT-LDA electronic structure; dashed line: using DFT-LDA elec-

value, «=1.10, is obtained if we consider tH@W correc-  tronic structure plus a “naif scissors operator” shift of 0.75 eV;

tions as calculated in Ref. 3. diamonds: experimental data from Ref. 14. A broadening of 0.1 eV
Since the absorption spectrum embodies both wave fundias been superimposed to all theoretical spectra.

tions and energies, in order to check the reliability of Xee

method it is interesting to compare the results for the dielec- |, Fig. 4 we compare th&e dielectric function with the

tric function obtained from it with the DFT-LDA results. ig|ectric function obtained through E€L4) using a mixed
Within the dipole approximation and neglecting the ef1‘ectse|ectronic structure, i.e., théa energy levels and the LDA

of th(_e_nor_ﬂocal part of th? pseu_dopotentlal, the eI_ectronquave functions. Differences between the two curves are
transition induced by a radiation field are described in terms

of the matrix elements of the momentum operatoHence, small, confirming that the DFT-LDA anda wave functions

. . . . . . are very similar.
the imaginary part of the dielectric functiar(«) is In conclusion, we face a strange situation: Xiemethod

872e2 yields wave functions and energies very close to the corre-
ga(w)= ——— 2 E [(v,k|p|c,k)[>6 spondingGW quantities, but a different optical spectrum,

@MV v.e K strongly reduced in intensity with respect to the LD@AW,

X[E(K)—E, (k) —f o], (14) or experimental spectra. This happens because the matrix

elements ofp in Eq. (14) are different from those needed

wherev andc label valence and conduction states of energy/Vithin the GW method, which contain a contribution of the
E, (k) andE.(k), andV is the crystal volume; the sum over nonlocal self-energy. It is also worth noticing that tKe

k is restricted to the first Brillouin zone. In order to achieve Method satisfies thesum rule, while theGW method does

a full convergence of the spectra, this sum is performed on 80t, because it embodies a nonlocal self-energy. These dif-
mesh of 825 specid points in the irreducible wedge of the ferences must occur between tBaV method andany ap-
Brillouin zone, and six conduction bands are considered iproach mimicking the self-energy with a local potential.

the sum. The results are shown in Fig. 3, where we report the

imaginary part of theXe and LDA dielectric functions cal-

culated according to Eq14). We also report the dielectric

function resulting from the DFT-LDA electronic structure by 30 T T T T T T T T T
applying a “naif scissors operator” of 0.75 eV, i.e., a rigid
shift of all the conduction levelgdashed ling The experi-
mental points are taken from Ref. 14. In tKe calculation,

the main features of the GaAs dielectric functitime E; and 2
E, peaks are shifted toward higher energies of about the « 15 b
same amount as in the scissors operator approach. TheE
heights, due to the energy denominator in Bdl), are quite 10k
strongly reduced in both cases. Minor differences appear be
tween theXa and naif scissors operator spectra. 5F

The main drawback of the naif scissors operator, due to
the neglect of the proper renormalization of the momentum o L
matrix elements in the presence of a nonlocal self-energy, is
the large underestimation of peak heightés shown in the
figure, ourXa approach displays a similar effect. The correct  F|G. 4. Solid line: Imaginary part of the dielectric function of
scissors operator approach, which instead embodies su@kAs obtained withinXe; dashed line: results obtained with a
renormalization, coincides with the LDA spectrum rigidly mixed electronic structuréXa energy levels, and DFT-LDA wave
shifted by 0.75 eV to higher frequencits. functions.

o [eV]
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oF self-energy operator, respective(**) and (3*). It is
1 E clear that the mean values \¢f* and3. keep near each other
= 3t only for & around 2/3. At that point th&W corrections act
= 5k in such a way that the gaps are increased, negative correc-
%’ Lk tions occurring to valence states and positive corrections to
@ conduction states. Such corrections, however, look rather
-9 F small on the energy scale of the figure. Going to higlas;
-21 ¢ the operatord/,* and tend to be far away. Although the
-7F Xa gaps are close to the W gaps fora close to 1.06, the
-9 expectation values of th&a exchange-correlation potential

on individual states are strongly different from those of the
GW self-energy. In this sense, the exchange-correlaXian
potential V" that better approximates the self-energy opera-

energy [eV]
I
w

-15 F
a7k tor is that one corresponding to the value=2/3, i.e., the
19 exchange-correlation potential of the ordinary DFT-LDA.

E -13 | V. CONCLUSIONS
? -5 We have explored the possibility of using tkee method
s 17 F in band-structure calculations, with the aim of mimicking the
-9 self-energy effects, or, alternatively, in order to obtain an
A optimized starting point fo W calculations. With respect to
06 07 08 09 10 11 12 13 14 the scissors operator, thér has the advantage that it does

a not introduce nonlocal terms, so that sum rules are obeyed by

FIG. 5. Mean values of operatoi (circles, 3X* (square} the Xa dielectric function. In order to reproduce at best. the
andSKS (diamonds, evaluated on thia states ak pointsT (top W gaps, we have to choose=1.06, to be compared with
pane), X (middle panel, and L (bottom panel for the lowest the LDA value of 2/3.Xa wave functions are within 0.1%
empty state(lempty symbols and for the highest occupied state from the LDA and theGW quasiparticle wave functions,
(filled symbols. while GW energies are reproduced within 0.1-0.2 eV. How-

ever, the intensity of the absorption spectrum is reduced, as
in the “naif scissors operator” approach.

IV. THE Xa POTENTIAL AS AN APPROXIMATION Moreover, although th&W gaps are well reproduced, the

FOR THE SELF-ENERGY expectation values of the-dependent exchange-correlation

\Raotential over individual states largely overestiméte ab-
solute valug the GW self-energy. This is due to the overes-
timation (for «>2/3) of the local exchange potential. Such
this case we are looking for the value which minimizes the an qverestimation, which depends on th'e local 'density, has

. . , negligible effects in nearly-free-electron-like semiconductors
difference between the exchgnge-correlatlon potggt@ as bulk GaAs, but might lead to the wrong results in the case
and the self-energy operator, in such a way tat(V;') s of surfaces, clusters, etc. It turns out that self-energy expec-
small, and perturbation theory can be applied safely. Wgation values on individual states can be best reproduced at
consider forY two possible expressions: the DFT-LDA level, that is fora=2/3.

It is our opinion that phenomenological approximations to
the self-energy operator better than the LDA exchange-
correlation potential, cannot be searched among local opera-
and tors like theXa exchange-correlation potential studied here,
even if more adjustable parameters are introduced. Consid-
ering the optical spectra indeed, the satisfaction offtfiem
rule by local operators implies that a local operator that im-
Then we compare the mean values of the two operatorgroves the position of the peaks, toward high energies with

In this section we adopt the second strategy devised abo

to determinex. Starting from theXw electronic structure, we

are now interested in th®@ W corrections to th&X« levels. In

EXa:GXaWXa, (15)

EKS: GDFT—LDAwDFT—LDA. (16)

evaluated on the following(q statesTlS\,,)}“lc, Xsy, Xic, respect to the LDA spectrum, gives necessarily a reduction
Ls,, andL,.. The expectation values 6 are evaluated of the global intensity of the spectrum, resulting in a wors-
on the same states. ening of the agreement with the experimental data.

Our results are shown in Fig. 5, where we considered four In conclusion, theXa exchange-correlation potential stud-
different values fora. Empty points refer to mean values of ied here cannot simultaneousliye., for the samev value
the operators evaluated on conduction states, while fillediescribe at best self-energy effects on individual states and
points refer to occupied states. Circles are used¥gf"),  on gaps. Hence we do not recommend its usage in band-
squares and diamonds are used for the two expressions of teucture calculations.
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