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Phenomenological approximations to the self-energy operator by a generalizedXa method

Valerio Olevano, Giovanni Onida, and Rodolfo Del Sole
Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica dell’Universita` di Roma ‘‘Tor Vergata,’’

Via della Ricerca Scientifica 1, I-00133 Roma, Italy
~Received 1 March 1999!

The generalizedXa method, based on a local, energy-independent operator derived from the exchange-
correlation potential of the local-density approximation by changing the weight of the exchange term, is
revisited with the aim of building an optimized starting point for band-structure calculations within theGW
method. We find that the optimal choice coincides with the unmodified local-density approximation potential,
i.e., with a52/3. Moreover, we show that the use of anXa method to mimic the self-energy effects in the
calculation of absorption spectra leads to worse results than the simpler ‘‘scissors operator’’ approach.
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I. INTRODUCTION

Ab initio calculations based on the density-function
theory in the local-density approximation1 ~DFT-LDA!, and
the subsequent corrections accounting for self-energy eff
computed in theGW approximation within the many-bod
quantum field theory, are now considered as a standard
to describe the electronic structure of condensed-matter
tems. The method can be summarized as follows: The
step is the solution of the DFT-LDA~Kohn-Sham! equa-
tions, a set of single-particle equations to be solved s
consistently. It is well known that the results obtained in t
way yield directly only the ground-state properties, such
lattice parameters, elastic constants, etc. In fact, den
functional theory, as initially formulated, is a ground-sta
theory; excited states are not directly accessible. Never
less, the calculated Kohn-Sham eigenvalues, which hav
direct physical meaning, are often interpreted as sing
particle excitation energies, and found in quite a good ag
ment with experimental quasiparticle energies~e.g., photo-
emission spectra!. This implies, however, some drawback
the most important one being an evident underestimate o
band gaps in semiconductors and insulators. For this rea
excited-state properties like optical-absorption spectra are
ten not well described in DFT.

A proper description of excited-state properties is p
vided by the many-body quantum field theory~MBQFT!, or
Green’s-function method, where a central role is played
the self-energyS(r ,r 8,v), a nonlocal, energy-dependent o
erator. The central equations of the theory, known as
Hedin equations,2 form a complex system of five integro
differential equations to be solved self-consistently. The
called GW approximation, in whichS5GW, i.e., the self-
energy is written as a convolution of the one-particle Gree
function G with the screened Coulomb interactionW, is ob-
tained from Hedin’s equations by neglecting vertex diagra
beyond the bare vertex. The work of Godby, Schlu¨ter, and
Sham3 and Hybertsen and Louie4 demonstrated the usefu
ness of theGW scheme in practical calculations for re
semiconductors. They start from the Kohn-Sham~KS! DFT-
LDA electronic structure, and evaluate perturbatively se
energy corrections to KS eigenvalues by computing the
pectation values of (GLDAWRPA2Vxc

LDA), whereVxc
LDA is the
PRB 610163-1829/2000/61~3!/1912~6!/$15.00
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exchange-correlation potential. This is based on the fact
the Kohn-Sham equations

@H01Vxc
LDA~r !#f i~r !5e if i~r ! ~1!

have the same structure of the quasiparticle equations o
MBQFT,

H0f i~r !1E d3r 8 S~r ,r 8,e i !f i~r 8!5e if i~r ! ~2!

and that the difference between the expectation values o
self-energy and of the exchange-correlation potential is
the order of 5% or 10%. The results obtained in this way
usually in excellent agreement with experimental data3,4

Moreover, it was found that in bulk semiconductors the K
eigenvectors reproduce extremely well the true quasipart
wave functions.4 This justifiesa posteriori the use of first-
order perturbation theory.

PerturbativeGW proved to give good results in man
cases, but reveals very heavy for complex systems like
faces or clusters, due to the large computational ef
needed in the evaluation of the self-energy matrix eleme
For large and complex systems, the possibility to mimic
self-energy operator with a local, energy-independent po
tial closer toS than Vxc

LDA is clearly an interesting issue
Moreover, the solution of KS equations containing such
modified potential could be used as a better starting poin
a subsequent evaluation of self-energy corrections within
GW scheme.5 A possible form for this local and energy
independent potential, following the maximum simplici
criterion, may be obtained within the generalizedXa ap-
proach, i.e., by modifying the weighta of the exchange term
in the LDA exchange-correlation potential. This method
clearly inspired by the original formulation of Slater,6 where
a ‘‘local exchange’’ potential was introduced in an appro
mate Hartree-Fock scheme. After the development of DFT
became clear that Slater’s local exchange potential over
1912 ©2000 The American Physical Society
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mated by a factor of 3/2 the DFT-LDA exchange potenti
However, when applied to solids, Slater’s exchange, at v
ance with the DFT-LDA exchange, generally yields ener
gaps in good agreement with experiments.

In this paper we explore the possibility of reproduci
GW eigenvalues in semiconductors by treating the wei
(a) of the exchange potential as an adjustable parame
Differently from Slater’s original approach, we keep the co
relation potential as calculated within the LDA. We ta
bulk GaAs as a test case.

The problem to solve is how to determinea. If one is
interested in obtaining good gaps~that is, in agreement with
GW calculations and experiments!, the natural way is to
choosea by fitting the energy gaps at some high-symme
points in the Brillouin zone. This has been our first approa
We founda of the order of 1.1, wherea51 is Slater’s, and
a52/3 is DFT-LDA. However, the gaps do not increa
equally, as happens going from LDA toGW. A further short-
coming of the approach is that the absorption spectrum
culated using the adjusteda value has a reduced intensi
with respect to the LDA and experimental spectra. T
point, related to thef-sum rule, is discussed in Sec. III.

If, on the other hand, one hopes to produce a better s
ing point than DFT-LDA for self-energy calculations, as pr
posed by Del Sole, Reining, and Godby,5 the quantities to be
reproduced are not the gaps, but rather the expectation va
of the exchange-correlation self-energy. This approach is
scribed in Sec. IV. Quite surprisingly, the best results
obtained fora close to 2/3, that is using the LDA exchang
correlation potential.

II. THEORY

The bare exchange energy per particle of the homo
neous electron gas at densityn is

ex
HEG~n!52

3

4p
~3p2n!1/3. ~3!

In the LDA approximation, the exchange potential~appear-
ing in the Kohn-Sham equations! is hence

Vx
KS
„n~r !…5

d

dnE d3r n~r !ex
HEG

„n~r !…

5ex
HEG

„n~r !…1n~r !
]

]n
ex

HEG
„n~r !…

52
1

p
„3p2n~r !…1/3. ~4!

So the KS exchange is exactly 2/3 of the Slater lo
exchange6

V̄x@n#52
3

2p
~3p2n!1/3. ~5!

In the spirit of a phenomenologicalXa method, we are
then lead to consider a generalized ‘‘exchange potentia
taking a times the Slater exchange
.
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Vx
Xa
„n~r !…52a

3

2p
„3p2n~r !…1/3. ~6!

In this expression,a must be considered an adjustable p
rameter. Physically, the exchange interaction lowers
filled bands with respect to the empty ones, because
larger where the density is larger. Therefore, choosinga
larger than 2/3~the DFT-LDA value! yields larger energy
gaps, correcting the well-known LDA underestimation of t
experimental band gap. Hence, one can hope that a gen
izedXa could be used to obtain a band structure closer to
GW results than the standard LDA one. We stress the
that we are interested only in the band structure, and no
ground-state properties~as total energies and lattice con
stants! which might be given incorrectly by a self-consiste
Xa calculation.

As addressed in the Introduction, two strategies can
followed in the choice ofa: in the first, its value is chosen b
simply minimizing the difference between the resulting LD
and GW gaps. In the second, one can choose thea value
which minimizes the differences between the diagonal m
trix elements of theXa exchange-correlation potential an
those of theGW self-energy operator, i.e., minimizing th
perturbative corrections to theXa electronic structure.

GW corrections to theXa electronic structure can b
computed along the same line of Refs. 3 and 4. Conside
the Xa modified Kohn-Sham equation,

@H01Vxc
Xa~r !#f i

Xa~r !5e i
Xaf i

Xa~r !, ~7!

and comparing it to the true quasiparticle equation~2!, first-
order corrected quasiparticle energies can be written as

e i5e i
Xa1

^f i
XauS~e i

Xa!2Vxc
Xauf i

Xa&
Zi

, ~8!

with

Zi512^f i
Xau

dS

de U
e

i
Xa

uf i
Xa&, ~9!

where the perturbative part of the Hamiltonian, (S2Vxc
Xa), is

considered to be small.
The self-energy operator in theGW approximation is

S~r ,r 8,v!5
i

4pE2`

`

dv8eiv8dW~r ,r 8,v8!G~r ,r 8,v1v8!

~10!

(d is a positive infinitesimal!.
To constructS, the free Green’s functionG can be com-

puted using the eigenvalues and eigenfunctions of the LD
or those from anXa calculation:

GXa~r ,r 8,v!52(
i

f i
Xa~r !f i

Xa~r 8!

v2e i
Xa6 id

. ~11!

Similarly, the screened Coulomb interaction,
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W5«21VC, ~12!

obtained from the random-phase approximation~RPA! di-
electric function«512VCx (0), requires the calculation o
the independent-particles polarizabilityx (0):

x (0)~r ,r 8,v!52(
i , j

~ f i2 f j !

3
f i

Xa~r !f j*
Xa~r !f i*

Xa~r 8!f j
Xa~r 8!

e i
Xa2e j

Xa2v2 id
,

~13!

which can be computed in the same way starting from
LDA or from theXa electronic structure. In both cases, as
Ref. 3, every matrix element ofWGG8 (v) is explicitly calcu-
lated at two imaginary energies, then its energy depende
is fitted to a plasmon-pole model along the imaginary ax

We calculate the DFT electronic structure of bulk Ga
using a dynamical minimization approach~the Car-Parrinello
method!, ab initio norm-conserving pseudopotentials, and
plane-wave basis set. The pseudopotentials used are o
Bachelet-Hamann-Schlu¨ter type7 in a fully separable
Kleinman-Bylander representation.8 The parametrization and
cutoff radii are the default ones of Ref. 9, tailored to avo
ghost-states problems.10 We use the Ceperley and Alder11

LDA exchange-correlation energy functional, as para
etrized by Perdew and Zunger;12 in the Xa calculation, we
simply allow the coefficienta of the exchange term to tak
values different from 2/3~the LDA one!. We keep the stan
dard, LDA pseudopotentials throughout all the calculati
This is justified by the fact that the modified exchange te
has the limited scope of mimicking theGW corrections to
the band structure of the solid, with no concerns about t
energy. Moreover, the ‘‘wave-function stability’’ discusse
below suggests that using anXa–generated pseudopotenti
would have only a small effect. The kinetic energy cutoff
18 Ry ~corresponding to about 300 plane waves at a gen
point in the Brillouin-zone!, and the Brillouin-zone integra

FIG. 1. Band-gap widening with respect to the LDA (a52/3)
value in bulk GaAs. Filled circles:G point; filled squares:X point;
filled diamonds:L point. The empty symbols correspond to theGW
widening, and are located on vertical dashed lines at thea values
which better reproduce theGW results ~left dashed line: presen
work; right dashed line: Ref. 3!.
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tion is done using ten special points of the Monkhorst a
Pack type13 in the irreducible Brillouin zone~IBZ!. All the
calculations are performed at the LDA theoretical lattice co
stant~10.51 a.u.!.

III. RESULTS: GAP OPTIMIZATION

In this section, we adjust the parametera with the aim of
obtaining energy gaps as close as possible to theGW gaps.
Figure 1 shows the influence ofa on the direct band gaps a
k points G, X, L. Taking as a reference the gaps obtain
with a52/3, we find a widening which increases linear
with a, the slope being different for the differentk points.
Hence, the effect is different with respect to theGW method,
where the conduction bands are almost rigidly upshifted b
constant value~the so-called scissors operator!. The almost
perfect linearity of the effect suggests that the wave fu
tions are not significantly changed by a change ofa. This is
confirmed by the behavior of the exchange-correlation c
tribution to the total energy of the system, as shown in Fig
The total energy changes linearly witha, driven by the
exchange-correlation term, while the kinetic plus elect
static term remains constant.

In order to check this ‘‘wave-function stability,’’ we
evaluated explicitly two different energy functionals~i.e., us-
ing a52/3 anda51) over two different sets of wave func
tions: the first one obtained self-consistently from the K
equations witha52/3, the second obtained usinga51
~Slater exchange!. Table I shows the values of the total an

FIG. 2. Different components of the total energy per GaAs u
cell versus a ~atomic units!. Circles: total energy; squares
exchange-correlation energy; diamonds: kinetic plus electros
energy.

TABLE I. Exchange correlation and total energies of bu
GaAs, obtained using the Kohn-Sham exchange (a52/3, KS! and
the Slater exchange (a51, SL!, evaluated both on the set of wav
functions that minimizes the Kohn-Sham functional (fa52/3) and
on the set of wave functions that minimizes the modified-excha
functional (fa51). Energies are in eV/unit cell.

fa52/3 fa51

Exc
KS 22.41 22.45

Exc
SL 23.42 23.49

Etot
KS 28.66 28.65

Etot
SL 29.67 29.68
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the exchange-correlation energies, obtained in the four ca
Clearly, the values are almost independent on the wave fu
tions used. In order to check if also the conduction bands
‘‘stable’’ with respect toa, we computed explicitly the su
perposition between KS and Slater wave functions for
first ten bands~four valence and six conduction!. We found
that the two wave function sets coincide within 0.1%. T
situation is similar to that reported about the comparis
between LDA andGW wave functions in bulk semiconduc
tors ~Ref. 4!.

As shown in Fig. 1, the trueGW electronic structure can
not be exactly reproduced by any value ofa. It is, however,
possible to consider thea value which minimizes the mea
square deviation between theXa and theGW band structure
at the high-symmetryk pointsG, X, andL. Considering the
GW corrections calculated in the present work, we obt
a51.06, slightly over the Slater value (a51). A similar
value, a51.10, is obtained if we consider theGW correc-
tions as calculated in Ref. 3.

Since the absorption spectrum embodies both wave fu
tions and energies, in order to check the reliability of theXa
method it is interesting to compare the results for the die
tric function obtained from it with the DFT-LDA results
Within the dipole approximation and neglecting the effe
of the nonlocal part of the pseudopotential, the electro
transition induced by a radiation field are described in ter
of the matrix elements of the momentum operatorp. Hence,
the imaginary part of the dielectric function«(v) is

«2~v!5
8p2e2

v2m2V
(
v,c

(
k

z^v,kupuc,k& z2d

3@Ec~k!2Ev~k!2\v#, ~14!

wherev andc label valence and conduction states of ene
Ev(k) andEc(k), andV is the crystal volume; the sum ove
k is restricted to the first Brillouin zone. In order to achie
a full convergence of the spectra, this sum is performed o
mesh of 825 specialk points in the irreducible wedge of th
Brillouin zone, and six conduction bands are considered
the sum. The results are shown in Fig. 3, where we report
imaginary part of theXa and LDA dielectric functions cal-
culated according to Eq.~14!. We also report the dielectric
function resulting from the DFT-LDA electronic structure b
applying a ‘‘naif scissors operator’’ of 0.75 eV, i.e., a rig
shift of all the conduction levels~dashed line!. The experi-
mental points are taken from Ref. 14. In theXa calculation,
the main features of the GaAs dielectric function~theE1 and
E2 peaks! are shifted toward higher energies of about t
same amount as in the scissors operator approach. T
heights, due to the energy denominator in Eq.~14!, are quite
strongly reduced in both cases. Minor differences appear
tween theXa and naif scissors operator spectra.

The main drawback of the naif scissors operator, due
the neglect of the proper renormalization of the moment
matrix elements in the presence of a nonlocal self-energ
the large underestimation of peak heights.15 As shown in the
figure, ourXa approach displays a similar effect. The corre
scissors operator approach, which instead embodies
renormalization, coincides with the LDA spectrum rigid
shifted by 0.75 eV to higher frequencies.16
es.
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In Fig. 4 we compare theXa dielectric function with the
dielectric function obtained through Eq.~14! using a mixed
electronic structure, i.e., theXa energy levels and the LDA
wave functions. Differences between the two curves
small, confirming that the DFT-LDA andXa wave functions
are very similar.

In conclusion, we face a strange situation: theXa method
yields wave functions and energies very close to the co
spondingGW quantities, but a different optical spectrum
strongly reduced in intensity with respect to the LDA,GW,
or experimental spectra. This happens because the m
elements ofp in Eq. ~14! are different from those neede
within the GW method, which contain a contribution of th
nonlocal self-energy. It is also worth noticing that theXa
method satisfies thef-sum rule, while theGW method does
not, because it embodies a nonlocal self-energy. These
ferences must occur between theGW method andany ap-
proach mimicking the self-energy with a local potential.

FIG. 3. Imaginary part of the dielectric function of GaAs. Sol
line: using theXa electronic structure; dotted line: using ordina
DFT-LDA electronic structure; dashed line: using DFT-LDA ele
tronic structure plus a ‘‘naif scissors operator’’ shift of 0.75 e
diamonds: experimental data from Ref. 14. A broadening of 0.1
has been superimposed to all theoretical spectra.

FIG. 4. Solid line: Imaginary part of the dielectric function o
GaAs obtained withinXa; dashed line: results obtained with
mixed electronic structure~Xa energy levels, and DFT-LDA wave
functions!.
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IV. THE Xa POTENTIAL AS AN APPROXIMATION
FOR THE SELF-ENERGY

In this section we adopt the second strategy devised ab
to determinea. Starting from theXa electronic structure, we
are now interested in theGW corrections to theXa levels. In
this case we are looking for thea value which minimizes the
difference between the exchange-correlation potentialVxc

Xa

and the self-energy operator, in such a way that (S2Vxc
Xa) is

small, and perturbation theory can be applied safely.
consider forS two possible expressions:

SXa5GXaWXa, ~15!

and

SKS5GDFT-LDAWDFT-LDA. ~16!

Then we compare the mean values of the two opera
evaluated on the followingXa states:G15v , G1c , X5v , X1c ,
L3v , andL1c . The expectation values ofVxc

Xa are evaluated
on the same states.

Our results are shown in Fig. 5, where we considered f
different values fora. Empty points refer to mean values o
the operators evaluated on conduction states, while fi
points refer to occupied states. Circles are used for^Vxc

Xa&,
squares and diamonds are used for the two expressions o

FIG. 5. Mean values of operatorsVxc
Xa ~circles!, SXa ~squares!,

andSKS ~diamonds!, evaluated on theXa states atk pointsG ~top
panel!, X ~middle panel!, and L ~bottom panel!, for the lowest
empty state~empty symbols! and for the highest occupied sta
~filled symbols!.
ve

e

rs

r

d

the

self-energy operator, respectively^SXa & and ^SKS&. It is
clear that the mean values ofVxc

Xa andS keep near each othe
only for a around 2/3. At that point theGW corrections act
in such a way that the gaps are increased, negative co
tions occurring to valence states and positive correction
conduction states. Such corrections, however, look ra
small on the energy scale of the figure. Going to highera ’s,
the operatorsVxc

Xa andS tend to be far away. Although the
Xa gaps are close to theGW gaps fora close to 1.06, the
expectation values of theXa exchange-correlation potentia
on individual states are strongly different from those of t
GW self-energy. In this sense, the exchange-correlationXa
potentialVxc

Xa that better approximates the self-energy ope
tor is that one corresponding to the valuea52/3, i.e., the
exchange-correlation potential of the ordinary DFT-LDA.

V. CONCLUSIONS

We have explored the possibility of using theXa method
in band-structure calculations, with the aim of mimicking t
self-energy effects, or, alternatively, in order to obtain
optimized starting point forGW calculations. With respect to
the scissors operator, theXa has the advantage that it doe
not introduce nonlocal terms, so that sum rules are obeye
the Xa dielectric function. In order to reproduce at best t
GW gaps, we have to choosea51.06, to be compared with
the LDA value of 2/3.Xa wave functions are within 0.1%
from the LDA and theGW quasiparticle wave functions
while GW energies are reproduced within 0.1–0.2 eV. Ho
ever, the intensity of the absorption spectrum is reduced
in the ‘‘naif scissors operator’’ approach.

Moreover, although theGW gaps are well reproduced, th
expectation values of thea-dependent exchange-correlatio
potential over individual states largely overestimate~in ab-
solute value! the GW self-energy. This is due to the overe
timation ~for a.2/3) of the local exchange potential. Suc
an overestimation, which depends on the local density,
negligible effects in nearly-free-electron-like semiconduct
as bulk GaAs, but might lead to the wrong results in the c
of surfaces, clusters, etc. It turns out that self-energy exp
tation values on individual states can be best reproduce
the DFT-LDA level, that is fora52/3.

It is our opinion that phenomenological approximations
the self-energy operator better than the LDA exchan
correlation potential, cannot be searched among local op
tors like theXa exchange-correlation potential studied he
even if more adjustable parameters are introduced. Con
ering the optical spectra indeed, the satisfaction of thef-sum
rule by local operators implies that a local operator that i
proves the position of the peaks, toward high energies w
respect to the LDA spectrum, gives necessarily a reduc
of the global intensity of the spectrum, resulting in a wo
ening of the agreement with the experimental data.

In conclusion, theXa exchange-correlation potential stud
ied here cannot simultaneously~i.e., for the samea value!
describe at best self-energy effects on individual states
on gaps. Hence we do not recommend its usage in ba
structure calculations.
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