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Condensed Matter Theories
• Models: 

– Jellium
– Anderson
– Hubbard -> DMFT

• Semi-Empirical and Phenomenological Theories:
– Tight Binding
– ...

• Ab Initio First-Principles or Microscopical Theories:
– CI
– QMC
– DFT, TDDFT
– MBPT (GW and Bethe-Salpeter Equation)

analytic
(but C-DMFT medium numerical)

lightly numerical

heavy numerical



What DFT can predict
(normal error 1~2% in the 99% of cond-mat systems)

• Atomic Structure, Lattice Parameters (XRD)

• Total Energy, Phase Stability
• Electronic Density (STM, STS)
• Elastic Constants 
• Phonon Frequencies (IR, Neutron scattering, Raman)

that is, all Ground State Properties!

DFT-LDA nlcc DFT-LDA semic EXP [Longo et al.]
a
b 4.641 Å 4.522 Å
c 5.420 Å
α 121.46

5.659 Å 5.549 Å 5.7517 ± 0.0030 Å
4.5378 ± 0.0025 Å

5.303 Å 5.3825 ± 0.0025 Å
121.73˚ 122.646˚ ± 0.096

Vanadium Oxide, VO
2

lattice
parameters
M. Gatti et al.,  PRL accepted



What DFT cannot predict

• Electronic Structure, Bandplot
• Bandgap, Metal/Insulator/Semiconductor
• Optical and Dielectric properties
that is, all Excited State Properties!

You may use DFT to predict all such properties
but it cannot be blamed if it does not succeed.

F. Bruneval et al.,  PRL 2006
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Stiebling 
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Energy Loss (EELS)

Energy-Loss Spectroscopies
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Inelastic X-ray Scattering
Spectroscopy (IXSS)
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Why we need ab initio theories
to calculate spectra

1)To understand and explain observed phenomena
2)To offer experimentalists reference spectra
3)To predict properties before the synthesis, the 

experiment



Excitations: Charged vs Neutral

Inverse Photoemission Optical Absorption

c

v

c

v

e hν

hν

Charged Excitations
N -> N+1 (or N-1)

(Photoemission Spectroscopy)

Neutral Excitations
N -> N

(Optical and Dielectric
Spectroscopy)
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Excitations: Charged vs Neutral

Inverse Photoemission Optical Absorption

electron-electron
interaction +

electron-hole 
interaction

c

v

c

v

electron-electron
interaction

Charged Excitations
N -> N+1 (or N-1)

Neutral Excitations
N -> N
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Photoemission Spectroscopy

direct photoemission

sample

e-
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inverse photoemission
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LURE Orsay, Sirotti et al.
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Optical Spectroscopy

incident
photon

reflected
photon

transmitted
photon

sample

hν

detector
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Dielectric, Energy-Loss Spectroscopy (EELS)

c

v

ωcv

e-

e-

c

v ωp

e-

plasmon

e-

sample

e-

e-

electrons

detector

Lautenschlager
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Synchrotron Radiation Spectroscopy (IXSS)

c

v

ωcv

c

v ωp

plasmon

ESRF, Grenoble

X

sample

X rays

detector
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Possible ab-initio Theories
for the Excited States

• TDDFT (Time-Dependent Density-Functional 
Theory) in the Approximations:
– RPA
– TDLDA
– beyond

• MBPT (Many-Body Theory) in the 
Approximations:
– GW
– BSE (Bethe-Salpeter Equation approach)

Charged Excitations

Neutral
Excitations

Neutral
Excitations

Valerio Olevano, Introduction to TDDFT



What is TDDFT?

• TDDFT is an extension of DFT; it is a DFT with 
time-dependent external potential:

v r ⇔r 

v r ,t ⇔r , t

Hohenberg-Kohn
theorem

Runge-Gross
theorem

• Fundamental degree of freedom: Time-Dependent 
electronic Density ρ(r,t) (instead of the total many-body 
wavefunction Ψ(r

1
,...,r

N
,t))

Valerio Olevano, Introduction to TDDFT

Static Ionic Potential

Static Ionic Potential
+

External Perturbation
(E.M. field)



TDDFT milestones

• Runge and Gross (1984): rigorous basis of 
TDDFT.

• Gross and Kohn (1985): TDDFT in Linear 
Response.



The Runge Gross theorem

i∂t1t= T V 1t  W 1t

i∂t2t = T V 2t W 2 t 

v1t≠v2t c t  ⇒ 1t ≠2t 

ot=〈t∣o∣t〉=o[]t 

Any observable is functional
of the (time-dependent) density:

ρ(t)

t

ρ
1

ρ
2

v
1

v
2

PRL 52, 997 (1984)



Runge Gross theorem caveats

ot=o [ ,0] t 
1) Any observable is functional of the density 

and of the initial state Ψ
0
=Ψ(t

0
)

2) The Runge-Gross theorem has been 
proven for v(t) Taylor expandable 
around t

0
. And if you run into problems 

already in describing the (nonequilibrium) 
initial state, you can't go on with TDDFT. 
Previous demonstrations required periodic 
v(t) or a small td perturbation (linear 
response), or later (Laplace transformable 
switch-on potentials+initial ground-state). 
But there is no very general prove of the 
Runge Gross theorem.

t

v(t)

t
0

What about this case?

t

v(t)

t
0

This other is also not
Runge-Gross described 



TDDFT vs DFT
Zoological Comparative Anatomy



 DFT           vs        TDDFT
Hohenberg-Kohn: Runge-Gross:

The Total Energy: The Action:

are unique functionals of the density.

The stationary points of the:

Total Energy Action

give the exact density of the system:

∫
t0

t1

dt 〈t ∣i∂t−
H t ∣t〉=A[]〈∣ H∣〉=E []

E []
 r 

=0

r ,t 

 A[]
 r ,t 

=0

r 

v r ,t ⇔r , tv r ⇔r 
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The extrema of the:



 DFT           vs        TDDFT
Kohn-Sham: Runge-Gross:

Kohn-Sham equations
i∂ti

KS
r ,t =HKS

r , ti
KS
r , tHKS

r i
KS
r =i

KS
i

KS
r 

r ,t =∑
i=1

N

∣i
KS
r ,t∣

2
r =∑

i=1

N

∣i
KS
r ∣

2

vKSr , t=v r , t∫dr '
r ' ,t 
∣r−r '∣


 Axc[ ]

r , t
vKSr =v r ∫dr '

r '
∣r−r '∣


Exc []

 r 
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ρ(t)

t

ρ
v

ρ(t)

t

ρ
vKS

W W=0

real system Kohn-Sham 
system



TDDFT further caveats
1) The functional A

xc
[ρ] is defined only for v-

representable densities. It is undefined 
for ρ which do not correspond to some 
potential v  ->  problems when variations 
δA[ρ] with respect to arbitrary densities 
are required in order to search for 
stationary points.

2) A functional A[ρ] with ρ(t) on the real 
time, is hill defined, since we would run in 
a causality-symmetry paradox  ->  we 
can solve the problem by declaring t on the 
Keldysh contour. Response functions are 
symmetric on the contour and become 
causal on physical time.

 A[]
 r ,t 

=0
 Axc [ ]

 r ,t 

 A
 v r , t v r 't '

=
 r ,t 
v r ' t '

symmetric causal 
(=0 for t'>t)

 As []

 r ,t 
=vsr ,t 

A[v ]=−A[]∫dr dtr ,t v r , t

 A[v ]
 v r , t

=r , t

If exists

Then we can define the
Lagrange transform:

t
0 t

Van Leeuwen, PRL 80, 1280 (1998).



TDDFT in Linear Response
 Gross and Kohn (1985)

• If:

TDDFT = DFT + Linear Response
(to the time-dependent perturbation)

• with:

v r ,t =v r  v r , t

v r ,t ≪v r 

Valerio Olevano, Introduction to TDDFT

Strong (Laser) perturbations excluded!



Hohenberg-Kohn Theorem
 for Linear Response TDDFT

v r ⇔r 

v r ,t ⇔r , t

v r  v r , t⇔r r , t

v r ,t ⇔r ,t 

DFT:

TDDFT:

LR-TDDFT:
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Calculation Scheme

DFT calculation (ABINIT code)

LR-TDDFT calculation (DP code)

v r ⇒r  ,i
KS ,i

KS

v r ,t ⇒ r ,t  ,


v
, spectra

Valerio Olevano, Introduction to TDDFT



Polarizability χ

External Perturbation
(variation in the external potential)

Polarizability χ

implicit definition of the polarizability χ:

vext

= vext

Induced Density
(variation in the density induced by δv

ext
)



Valerio Olevano, Introduction to TDDFT



Variation in the Total Potential

The variation in the density induces a variation in the Hartree
and in the exchange-correlation potentials which screen the 
external perturbation:

vH=
 vH

 
 =v c

vtot=vext vHv xc

So that the variation in the total potential (external + screening) is:

v xc=
vxc


 = f xc

Total Perturbation

f xc=
vxc



Exchange-Correlation
Kernel definition

Valerio Olevano, Introduction to TDDFT



LR-TDDFT Kohn-Sham scheme:
the Independent Particle Polarizability χ(0)

Let's introduce a ficticious s, Kohn-Sham non-interacting system such that:

Independent Particle
Polarizability χ (0)=

0
 vtot

s=

Then, instead of calculating χ, we can more easily calculate the 
polarizability χ(0) (also χ

s
 or χKS) of this non-interacting system,

called independent-particle polarizability and defined:

Valerio Olevano, Introduction to TDDFT



the Independent Particle Polarizability χ(0)

Independent-Particle 
Polarizability (Adler-Wiser)0r ,r ' ,=∑ij

 f i− f j
ir  * jr  *i r ' jr '

−i− j−i

By variation δv
tot 

(= δv
s
 = δvKS) of the Kohn-Sham equations, one obtains the

Linear-Response variation of the density δρ and then an expression for χ(0

in terms of the Kohn-Sham energies and wavefunctions:

GG'
0 q ,=∑ij

 f i− f j
〈 j∣e

−i qGr
∣i〉 〈i∣e

i qG'r
∣ j〉

−i− j−i

In Frequency-Reciprocal space:

Valerio Olevano, Introduction to TDDFT



χ as a function of χ(0)

Polarizability χ

Exchange-Correlation KernelCoulombian (Local-Fields)

=
0


0
vc f xc

=1−0vc−
0 f xc

−1

0

Also explicitly:

The polarizability in terms of the independent-particle polarizability is:

 = vext

=
0
vtot

From:

Valerio Olevano, Introduction to TDDFT



Dielectric Function

definition of the Dielectric Function ε

Test-Particle
Dielectric Function


−1
=1vc

vtot=
−1
vext

te
−1
=1vc f xc  Test-Electron Dielectric Function

GG'
−1
q , In a periodic system

Valerio Olevano, Introduction to TDDFT



Macroscopic Dielectric Function

Macroscopic
Dielectric 
Function ε

Μ

M q ,=
1

00
−1
q ,

Observables

Macroscopic Dielectric Function ε
Μ

ABS=ℑM
EELS=−ℑM

−1

M r ,r '=r ,r '

M
LF
≠00=M

NLF



TDDFT: fundamental equations

χ (0)(r, r', ) ( fi f j)
i (r) j

* (r) i
*(r') j(r')

i ε j ω − i
i j

Dielectric 
Function ε

Polarizability χ

Independent-Particle 
Polarizability (Adler-Wiser)

Exchange-Correlation Kernel

Exchange-Correlation KernelCoulombian (Local-Fields)

Observables
ABS = Im ε

EELS = -Im ε−1

=
0


0
vc f xc


−1
=1vc

f xc=
 vxc


=?

approximations required



Local-Fields Effects (LF)

Macroscopic Dielectric Function ε 
without local-fields effects (NLF)

vG
tot
=∑

G '
GG'
−1
 vG '

ext Effect of the ε  non diagonal elements 
(density inhomogeneities) 

M
NLF
q ,=00 q ,

vext

−1
~ vtot

+ →

Valerio Olevano, Introduction to TDDFT



LR-TDDFT Calculation Scheme
Résumé


DFT

KS
DFT

KS
DFT

f xc

0





M
Valerio Olevano, Introduction to TDDFT



dp code
(dielectric properties)

• The thing: Linear-Response TDDFT code in Frequency-Reciprocal Space on PW
basis.

• Purpose: Dielectric and Optical Properties (Absorption, Reflectivity, Refraction, 
EELS, IXSS, CIXS,..

• Systems: bulk, surfaces, clusters, molecules, atoms (through supercells) made of 
insulator, semiconductor and metal elements.

• Approximations: RPA, ALDA, GW-RPA, LRC, non-local kernels, …,                     
with and without LF (Local Fields).

• Machines: Linux, Compaq, IBM, SG, Nec (6GFlop) , Fujitsu.
• Libraries: BLAS, Lapack, CXML, ESSL, IMSL, ASL, Goedecker, FFTW.
• Interfaces: ABINIT, Milan-CP, PWSCF, SPHINGx

http://www.dp-code.org



Frequency-Reciprocal space:
why and where could be convenient

• Reciprocal Space -> Infinite Periodic Systems 
(Bulk, but also Surfaces, Wires, Tubes with the 
use of Supercells);

• Frequency Space -> Spectra. 

Valerio Olevano, Introduction to TDDFT

In the case of isolated systems (atoms, molecules) it is more convenient
a real space-time approach (e.g. Octopus code)



DP Flow Diagram
i

KS
Gi

KS

f xc

GG'
0 q ,=∑ij

 f i− f j
ijG *ij G'

 i− j−

GG' q ,

GG'
−1
q ,

M
LF
q ,

i
KS
r 

ijr =*ir  jr 

ijG

M
NLF
q ,

FFT-1

FFT

INV

DFT-code interface



DP tricks

GG'=1−
0vc−

0  f xcGG' '
−1

G''G'
0 

we solve the linear system for only the first column of

If we only need                               that is only 
then instead of solving (inverting a full matrix):

1−0v c−
0 f xc GG'G'0=G 0

0 

0000
−1
=1−v000

G'0

O(N2) instead of O(N3)



DP Parameters
i

KS
Gi

KS

f xc

GG'
0 q ,=∑ij

 f i− f j
ijG *ij G'

 i− j−

GG' q ,

GG'
−1
q ,

M
LF
q ,

i
KS
r 

ijr =*ir  jr 

ijG

M
NLF
q ,

FFT-1

FFT

INV

N
G
 = npwwfn

N
b
 = nbands

N
G
 = npwmat

N
ω
 = nomega



DP performances:
CPU scaling and Memory usage

• CPU scaling for
• CPU scaling for
• Memory occupation


0 : N bN kNNG

2
N r logN r 


−1 : NNG

2

NNG
2
Nr N kN b



 Exchange-Correlation Kernel f
xc

:

the RPA approximation

• Random Phase Approximation = neglect of the 
exchange-correlation effects (in the response)

– RPA                   
f xc

RPA
=0



RPA Approximation
RPA (without Local Fields) = sum over independent transitions 
(application of Fermi’s Golden Rule to an independent particle system)

Fermi’s Golden Rule

KS energies

Optical 
Absorption

KS wavefunctions

c

v

ωcvhν

solid
f

i

ωfihν

confined system

ℑRPA =∑vc
∣〈c∣

D∣v 〉∣
2−c−v

Valerio Olevano, Introduction to TDDFT



Adiabatic Local Density 
Approximation (TDLDA)

• The Adiabatic Local Density Approximation

– ALDA
f xc

ALDA=
v xc

LDA

  =0

f xc
ALDA

r ,r '=Ar r ,r ' local in r-space
no memory effect



TDDFT: Results

 no noOptical Prop

 ok okEnergy Loss

Solids

 ok but.. ok but..Optical Prop

 ok okEnergy Loss

Isolated

ALDARPA

Energy  Loss           ->    -Im ε-1

Optical Properties   ->     Im ε



TDDFT: Results

Energy Loss



TDDFT and EELS in Solids

• TDLDA (but also RPA) in good 
agreement with experiment;

• Importance of Local-Field (LF) 
effects.



Local Field Effects in EELS

• RPA is enough. But  when 
inhomogeneities are present,  Local-
Field effects should be absolutely 
taken into account.

• Quantitative Agreement

A. Marinopoulos et al. PRL 89, 76402 (2002)



IXSS and CIXS
and other synchrotron-radiation spectroscopies

• In Solids all Dielectric Properties related to the Energy-Loss 
function are well described by TDDFT in RPA with an 
improvement in ALDA.

Weissker et al.

V. Olevano, thesis



IXSS synchrotron-radiation spectroscopy

• In Solids all Dielectric Properties related to the Energy-Loss 
function are well described by TDDFT in RPA with an 
improvement in ALDA.

Weissker et al.



TDDFT: Results

Optical Properties



TDDFT RPA
Optical Properties in Nanotubes

• RPA is qualitatively able to interpret observed 
structures in optical spectra



LF Effects in 
in C and BN Nanotubes

• LF explain depolarization effects both for C and BN 
Nanotubes in perpendicular polarization optical spectra



Optical Absorption in Clusters

G. Onida et al, Rev. Mod. Phys. 74, 601 (2002).

RPA NLF
EXP TDLDA

RPA LF

• Fair agreement (improvable) of the 
TDLDA result with the Experiment. 



Optical Properties in Solids: Si

• The TDLDA cannot reproduce 
Optical Properties in Solids.

• We miss both: 

1 Self-Energy (electron-electron) 
effects (red shift of the entire 
spectrum)

2 Excitonic (electron-hole) 
effects (underestimation of the 
low-energy part)



GW: optical properties in Solids

• GW corrects the red-shift but still misses the Excitonic Effects



MBPT: GW, BSE and Excitonic Effects

P = + + O(2)+

RPA GW BSE

Polarization

e-

h+

c

v

ωcvhν

c

v

ωcvhν

c

v

ωcvhν W

exciton

Valerio Olevano, CNRS, Intoduction to TDDFT



Bethe-Salpeter Equation: 
optical properties in Solids

• Almost quantitative agreement of BSE with the 
experiment



Solid Argon: Hydrogen series

• Exciton ~ Hydrogen atom     →      En ~1/n2 Balmer-like series

• BSE can reproduce even bound Excitons

n=1

n=2
n=3



What can we do to solve
the TDDFT kernel problem?

• If a new Approximation in TDDFT could be 
established, combining TDDFT’s simplicity with 
MBPT’s reliability…

• Hints for this new Approximation: compare 
critically MBPT with TDDFT fundamental 
equations.



New Approximations:

LRC
(Long Range Contribution only)

Nanoquanta kernel
(or mapping BSE on TDDFT)



LRC Approximation

Long Range Contribution onlyf xc
LRC
=limq0 f xc

MT
=−



qG2

=4.6 ∞
−1 Inversely proportional to the screening

=
0


0
vc f xc

long-range coulombian

ALDA: local kernel



TDDFT, LRC approximation

• The LRC approximation makes TDDFT work also on 
Optical Properties in Solids



Nanoquanta kernel

G

W
χ

0

-1

L. Reining, V. Olevano, A. Rubio and G. Onida, (2001)

F. Sottile, V. Olevano and L. Reining, (2004)

A. Marini, R. Del Sole, A. Rubio, (2004)

G. Adragna and R. Del Sole, (2001)

U. Von Barth, N. E. Dahlen, R. Van Leeuwen and G. Stefanucci, (2006)

R. Stubner, I. Tokatly and O. Pankratov, (2006)



TDDFT vs BSE

4-point
TDDFT

BSE

4-point
Coulombian

KGW = Self-Energy correction
           diagonal term

TDDFT-BSE Differences:

FTDDFT
x1 , x2 , x3 , x4=x1 , x2x3 , x4 f xc x1 , x3

FBSE
x1 , x2 , x3 , x4=−x1 , x3x2 , x4 f xcx1 , x2

P x1 , x2 , x3 , x4=
0
x1, x2, x3, x4

0
vcFTDDFT

P

P x1 , x2 , x3 , x4=P 0
x1, x2 , x3 , x4P

0 
v cFBSE

P

P 0
=

0


0KGW P 0



Nanoquanta  fxc

Where:

Kohn-Sham bilinear

GW shift term

Excitonic
term

WARNING: fxc could not exist due to invertibility problems of Φ!

static

PRL 88, 066404 (2002).

f xc q ,G ,G'=∑n1n2n3n4

1
 f n1

− f n2


−1
n1 ,n2 ;GK n1n2 n3n4


*

−1
n3 ,n4 ;G '

n1 ,n2 ;r =n1
r n2

H
r 

Kn1n2n3n4
=n2

GW
−n1

GW
n1n3

n2n4
 f n1

− f n2
F n1n2 n3n4

BSE

Fn1n2n3n4
BSE

=−∫dr dr 'n1 ,n3 ; r W r ' ,r * n2 ,n4 ;r '



Solid Argon: Bound Excitons

• The Nanoquanta kernel makes TDDFT reproduce even Bound Excitons

n=2

n=1

n=3

F. Sottile et al.



TDDFT Excitation Energies
and the Casida Equations

∑t '
tt ' at '=

2at

tt'=t
2
tt '2tt ' f tt'

Hxc

t=c−v

f tt '
Hxc
=∫dr1dr 2*c r 1v r1[vc r 1 ,r 2 f xc r1 ,r 2 ,] *v' r2c' r2

eigenvalues = poles of χ

eigenvectors = oscillator strengths

Kohn-Sham excitation energies

4-points Hartree+xc kernel



DP license:
Scientific Software Open Source 

Academic for Free License
Academic, non-commercial, non-military purposes:
• freedom to: use, copy, modify and redistribute 

(like GPL)
• open source (like GPL)
• cost: for free (in the sense gratis, royalty free)
• scientific behaviour: request of citation
Commercial purposes:
• excluded by this license, but allowed under 

separate negotiation and different license

http://www.dp-code.org/download http://www.dp-code.org/license

http://www.dp-code.org/
http://www.dp-code.org/


Conclusions
• TDDFT is a valid tool of Condensed Matter Theoretical Physics to 

calculate from first principles excited-state properties;
• The agreement with the experiment is good, but the choice of the 

right xc-approximation with respect to the given excited state 
property is crucial:
– RPA with LF is able to reproduce EELS spectra at q=0;

– TDLDA improves upon RPA on EELS (and also IXSS, CIXS) spectra at 
high q;

– TDLDA seems also to improve upon RPA on optical spectra in finite 
systems;

– More refined kernels (LRC, MT) are required to reproduce optical spectra 
in solids, especially in presence of strong excitonic effects and bound 
excitons.

• Perspectives:
– Improve the algorithms, simplify the orbital expressions of the kernel, find 

a density-functional dependent kernel. 


