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Graphene exhibits unique electrical properties on account of its
reduced dimensionality and neutrino-like “‘massless Dirac
fermion” quasiparticle spectrum. When contacted with two
superconducting electrodes, graphene can support Cooper pair
transport, resulting in the well-known Josephson effect. The
current—phase relation in a ballistic graphene Josephson
junction is unique, and could provide a signature for the
detection of ballistic Dirac fermions. This relation can be
measured experimentally either directly via incorporation of
graphene in an RF superconducting quantum interference
device (SQUID) or indirectly via a dc-SQUID. We calculate the

1 Introduction Graphene, a two-dimensional allo-
trope of carbon extracted in 2004 [1], has many interesting
electronic properties on account of its neutrino-like band
structure [2]. The quasiparticles in graphene, called Dirac
fermions, are massless with pseudo-spin half and have a
linear energy—momentum dispersion relation. Many exper-
iments on graphene seek to verify the existence of or probe
the consequences of such a quasiparticle dispersion. One of
the most common techniques is electronic transport
measurements, and although results abound in the diffisuve
regime [3], where the carrier mean free path is much shorter
than the inter-electrode separation, there is no definitive data
on transport of ballistic Dirac fermions. The problem
inherent in diffusive electronic transport is that the combined
system of quasiparticles plus scatterers is probed rather than
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expected flux modulation of the switching current in the case of
the dc-SQUID and compare the results to a previous experi-
ment. Further experiments investigating the current—phase
relation in graphene are promising for the observation of
ballistic Dirac fermions.
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just the quasiparticles themselves. The ballistic regime, in
which there is no scattering, directly investigates the
behavior of Dirac fermions. Unfortunately, this regime is
currently much more difficult to access experimentally than
the diffusive one despite advances in suspending devices
[4, 5], which eliminates the strong contribution to scattering
from the substrate. Nonetheless, most theoretical calcu-
lations or predictions for interesting graphene-based devices
[6, 7] ignore scattering completely and are completely in the
ballistic regime.

Here, following Titov et al. we calculate the expected
transport parameters such as conductance in the ballistic case
for the simplest device geometries. In addition to considering
graphene contacted with normal metals, we present results
for graphene Josephson junctions. Graphene as a weak link
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in a superconducting loop is an interesting system to study
since the magnetic flux threading the loop controls the phase
difference across the junction and provides a complementary
tuning knob to the electric field set by the back gate. The
expected switching current dependence on magnetic flux for
graphene in a ballistic dc superconducting quantum inter-
ference device (SQUID) is presented and compared to a
previous experiment.

2 Transport calculations The Landauer formalism
is used to calculate the conductance and current—phase
relations for the graphene junction geometry described by
Fig. 1. In the case of graphene, the transmission coefficients
are calculated by solving the transmission problem for the
Weyl equation instead of the Schroedinger equation, and one
obtains:

K,

T, =
! ki cos? k,L + klz; sin® k, L
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where the n-th transverse mode has wavevector g, = (n + 1/
2)7t/W, the Fermi wavevector is kg, and k> = k& — ¢ [8].
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Figure 1 (online color at: www.pss-b.com) Device geometries:
(a) graphene sandwiched between two normal metal electrodes (N).
The electrode spacing is L and the width of the graphene sheet is W.
(b) Graphene Josephson junction with superconducting electrodes
(S). (c) dc graphene superconducting interference device, as
employed in Ref. [4]. The phase difference across the junctions
is controlled by the magnetic flux through the loop A.
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The conductance G =1/V for the graphene junction with
normal metal contacts of Fig. la is given by the Landauer
formula:

4%
G="0 Z T, 2)

The graphene conductance quantum 4e*/h includes both
spin and valley degeneracy. The Fermi wavevector
kg = /mn will vary as the square root of the back-gate
voltage applied in a standard field-effect geometry
(n = cVgae, With ¢ the capacitance per unit area). There is
always some residual carrier density of order 10'®cm ™2 in
unsuspended samples and 10® cm ™2 in suspended ones due to
charged impurities in the substrate in the first case and
defects and/or adsorbates in the second. This will smear out
the conductance near the Dirac point. However, in a
geometry where W>> L and far from the Dirac point, we
solve Eq. (2) and obtain a dependence G kg and hence
G < \/Vgae. This sub-linear gate dependence with power
one-half far from the Dirac point is a sign of ballistic
conductance in wide and short samples, and contrasts with
the linear gate dependence observed in diffusive samples in
the long and narrow geometry. Other signs are a small
oscillation on top of the square-root dependence whose
spacing also varies as the square root of the gate voltage
(not shown). The oscillation maxima occur at multiples
of m/L and correspond to resonant transmission at the
particle-in-a-box wavelengths.

For a superconductor—graphene—superconductor
Josephson junction (Fig. 1b), one can likewise calculate
the current—phase relation [8]:

1) =0y Tasin() 3)

n /1 —T,sin* (¢/2)

which can be evaluated numerically and is plotted for
several gate voltages in Fig. 2a for a wide-and-short device
(W>>L). The superconducting gap is Ay. We note several
features: (1) ¢., the phase which maximizes the critical
current, oscillates by roughly 20° as a function of gate
voltage; (2) much like in the normal case, the maximum
critical current varies as the square root of the gate voltage
far from the Dirac point and shows similar oscillations; (3)
the product of the maximum critical current and the normal
state resistance also shows oscillations as a function of gate
voltage. All these features are signatures of ballistic
transport in the wide-and-short geometry.

The current—phase relation can be directly measured by
various techniques, one of which is by incorporating the
graphene Josephson junction in an RF SQUID [9].

Given this current—phase relation, we can calculate the
critical current variation as a function of magnetic field
and gate voltage for the graphene dc SQUID of Fig. lc.
Ignoring any loop inductance, we maximize the sum
1(¢p+60)+ (¢ — 0) over O, where ¢ =21DP/PD, and O are the
difference between and the sum of the phases of the two
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Figure 2 (online color at: www.pss-b.com) (a) Current—phase
relation for a graphene Josephson junction with W>> L for several
different values of the Fermi wavevector. From top to bottom kgL is
8,6,4,3,2,1,and 0 (Dirac point). The critical currentis given in units
of eAgW/2hL. (b) Critical current variation as a function of magnetic
flux for the dc superconducting quantum interference device in
Fig. lc. Critical current is in arbitrary units.

Josephson junctions comprising the SQUID, respectively.
The applied magnetic field H tunes the phase difference via
the flux threading the SQUID loop of area A, @/®,= HA/(h/2e¢).
The resulting graph, Fig. 2b, shows that the modulation
should be sinusoidal near the critical current maxima
(constructive interference, @ =n®,) and triangular near
the minima [destructive interference, @ = (2n + 1)@y/2]. In
addition, the critical current at the minima does not drop to
zero, and full modulation is not expected at any gate voltage,
including the Dirac point. Furthermore, calculation for the
case of an asymmetric SQUID, where the Josephson energies
of the two junctions are different, gives a skewed critical
current—flux relationship. This reproduces the effect of an
inductance in series with one of the junctions in the SQUID.

In the normal state, an ideal symmetric, ballistic
graphene dc SQUID is two junctions as in Fig. 1a in parallel
and should show twice the conductance calculated above,
with G o< \/Vgae and peaks at kg = nm/L. Below the
superconducting transition temperature of the contacts, the
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critical current as a function of gate voltage at zero flux
should show behavior similar to the conductance in the
normal state. The applied magnet field should also modulate
the critical current as in Fig. 2b. All of these signatures
together would be conclusive evidence for ballistic
electronic transport in a single graphene device.

3 Experiment The present authors measured gra-
phene dc SQUIDs in the geometry of Fig. 1c [10]. Typical
junction width was several microns and junction length from
50 to 200 nm. The contacting Pd/Al electrodes (5/45 nm)
themselves were 0.5 wm wide. This geometry is attractive
because the properties of the graphene sheet, such as overall
substrate doping, should be similar for the two junctions
since they are so closely spaced. In addition, samples which
are not rectangular can be used as long as the variation in
sheet width is small relative to the junction spacing, roughly
one micron. In order to approach the ballistic limit, high
resolution electron beam lithography was used to define
junction gaps as small as 50 nm. Although even smaller gaps
could be patterned, liftoff was unsuccessful in that case.
Even with 50 nm gaps however, the mean free path is at best
comparable to L given our device mobilities.

Before patterning electrodes, the graphene is extracted
from Kish graphite and deposited on degenerately doped
p-type silicon wafers with 285 nm of silicon dioxide. Single
layers are identified by analyzing optical contrast and
confirmed with Raman spectroscopy. Devices are mounted
in a dilution refrigerator with base temperature 20 mK and
connected to highly filtered lines. A magnetic field
perpendicular to the plane of the sample is applied by a
small superconducting coil attached above the sample. The
carrier density is varied by the back-gate voltage applied to
the degenerately doped silicon layer.

Figure 3 shows measurements taken on a single graphene
dc SQUID with W/L ~ 20 and L ~ 80 nm. The modulation of
the mean switching current as a function of the applied
magnetic field at several values of the gate voltage is given by
the black dots. To make the measurements, multiple hysteretic
IV curves are taken for a fixed value of the magnetic field and
back-gate voltage. A histogram of the switching current is
recorded and the mean value is plotted in Fig. 3. The curves are
sinusoidal with slight skew indicative of a loop inductance.

They can be fit (solid lines) using the model of Fulton and
Dynes [11] for a SQUID with asymmetric junctions and loop
inductance. Assuming a sinusoidal current—phase relation
appropriate for tunnel junctions, the skewness is fit by a small
gate-voltage independent loop inductance parameter 2w Lol/
@, ~ 0.2. The junction asymmetry ratio is given by the fits to
be approximately 10:1 (ratio between the critical currents in
each branch of the SQUID) and varies slightly with the gate
voltage. Given the fitted value of the critical current of the
stronger branch, /,, we estimate the loop inductance L to be
on the order of 10 pH, comparable to an estimate of 15 pH
obtained for a rectangular wire loop of the dimensions of our
SQUID. Hence the skewness can be explained by the
physical loop inductance, but the reason for the high
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Figure 3 (online color at: www.pss-b.com) Measured mean
switching current of a wide-and-short (W >> L) graphene dc super-
conducting quantum interference device as a function of magnetic
flux. Traces are at different gate voltages, with —25 V at the top, and
spaced by 10 V. Overlaid are fits to the data described in the text.

asymmetry is not evident from inspection of the device. It is
likely that with such asymmetry, the actual phase relation is
indistinguishable from that of a tunnel junction.

4 Conclusion Measurement of the current—phase
relation of graphene can give indication that electronic
transport is ballistic. Distinctive, identifiable features are
also present in the dc graphene SQUID critical current—flux
dependence. Further work is necessary to produce devices
with electrode separation L much less than the mean free
path. Such devices will directly probe the nature of the

www.pss-b.com

“massless Dirac fermion” quasiparticles in graphene,
instead of the coupled system of quasiparticles plus
scatterers.

Acknowledgements This work was supported by the
Director, Office of Energy Research, Office of Basic Energy
Sciences, Materials Sciences and Engineering Division, of the US
Department of Energy under contract DE-AC02-05CH11231 and
the Office of Naval Research under grant NO0014-07-1-0774. Y. Z.
acknowledges a postdoctoral fellowship and V. B. a visiting
professor fellowship from the Miller Institute, UC Berkeley.

References

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
Y. Zhang, S. V. Dubonos, 1. V. Grigorieva, and A. A. Firsov,
Science 306, 666 (2004).

[2] A. H. Castro-Neto, F. Guinea, N. M. R. Peres, K. S. Novo-
selov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[3] J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams,
and M. Ishigami, Nature Phys. 4, 377 (2008).

[4] X. Du, I. Skachko, A. Barker, and E. Andrei, Nature Nano-
technol. 3, 491 (2008).

[5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg,
J. Hone, P. Kim, and H. L. Stormer, Solid State Commun.
146, 351 (2008).

[6] Y.-W. Son, M. L. Cohen, and S. G. Louie, Nature 444, 347
(2000).

[7] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nature
Phys. 3, 192 (2007).

[8] M. Titov and C. Beenakker, Phys. Rev. B 74, 041401(R)
(2000).

[9] A. A. Golubov, M. Yu. Kupranov, and E. II’chev, Rev. Mod.
Phys. 76, 411 (2004).

[10] C. O. Girit, V. Bouchiat, O. Naaman, Y. Zhang, M. F.
Crommie, A. Zettl, and 1. Siddiqi, Nano Lett. 9, 1 (2009).

[11] T. A. Fulton, L. N. Dunkelberger, and R. C. Dynes, Phys.
Rev. B 6, 855 (1972).

© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



