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Notice

The first part of this manuscript, composed of an introduction followed by an extended

abstract, is written in french. English readers should go directly to page 37.

Avertissement

La partie rédigée en francgais de ce manuscrit est organisée de la fagon suivante :
dans un court préambule, est exposée une présentation générale du domaine dans laquelle
s’inscrit cette thése: les effets de charges dans les nanostructures métalliques et leur principaux
développements. Les problémes spécifiques considérés dans le corps du manuscrit, a savoir
la mise en évidence des fluctuations quantiques de la charge dans ces circuits, sont ensuite
abordés dans I'introduction. Cette introduction est suivie d’une présentation synthétique des
principaux résultats obtenus, qui font chacun 'objet d’un chapitre distinct dans le corps du

manuscrit rédigé en anglais.
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encadre 1

[.'effet tunnel dans les nanostructures métalliques

Les jonctions tunnel considérées dans cette thése sont du type métal/isolant/métal. Les surfaces
caractéristiques S des jonctions sont de l'ordre de 0.1x0.1 um?. La fine barriére isolante séparant
les deux électrodes est constituée d'une couche d'oxyde d'environ 1 nm d'épaisseur.

© ©

&/

| | g . |
4____ M i L -
_k\k‘. _k\ F Y ®_ _k\

Les deux électrodes sont ici connectées a une source de tension U. Un évenement tunnel se traduit

par la création d'une paire électron-trou de part et d'autre de la jonction. Le travail de la source
vaut Eo-E;=eU. Le taux de transition tunnel par unité de temps I" est donné par:

L

|

|

|
a7

1

r—g

E,-E, U
t e2 = gt_e

ou g; est la conductance tunnel de la jonction. Cette conductance s'écrit comme:
g=2¢e?/hNT

Le nombre N correspond au nombre de canaux ouverts, il est donné par le rapport entre la
surface S et l'extension latérale caractéristique Az d'une fonction d'onde électronique soit environ

10% pour la jonction considérée; T est la transmission moyenne d'un canal.

Les conductances tunnel fabriquées étant petites ou du méme ordre de grandeur que le quantum
de conductance e*h, le produit NT est d'ordre unité, soit T<< 1. Les jonctions tunnel considérées
par la suite sont donc constituées d'un grand nombre de canaux électroniques tres peu transmis.
La situation est donc trés différente de celle rencontrée dans les boites quantiques contruites a
partir de gaz bidimensionnels d'électrons, pour lesquelles les jonctions tunnel sont caractérisées
par un petit nombre de canaux dont la transmission peut étre rendue proche de l'unité.

- 14 -



INTRODUCTION

Préambule

L’électronique a un électron

Quantification de la charge d’une électrode

Au cours d’une expérience restée célebre [1], Millikan a montré, en mesurant la déviation de
la trajectoire dans un champ électrique de gouttelettes d’huile chargées, que la charge électrique
de ces gouttelettes était quantifiée en multiples du quantum de charge e ~ 1.6 x 1071°C'. Cette
expérience, réalisée en 1911, marque un des débuts de la mécanique quantique. De facon
plus directe, elle montre que la charge d’une électrode isolée est quantifiée. Cette expérience
reste cependant limitée puisque Millikan ne pouvait controler la charge de ces gouttelettes

parfaitement isolées.

q=-ne

Représentation schématique d’une électrode isolée: sa charge est un multiple de la charge
électronique e.

Par ailleurs, il n’aurait pu observer la quantification de la charge sur une armature de con-
densateur non isolée, non pas a cause du nombre plus important d’électrons mis en jeu mais
parce que la quantification méme de la charge en multiples de e n’aurait plus été dans ce
cas assurée: la charge d’un condensateur connecté a une source de tension est une quantité
continue, correspondant & un déplacement (pouvant étre rendu infinitésimal) du fluide élec-
tronique par rapport au réseau ionique. La quantification de la charge apparait donc a prior:

comme antagoniste avec la possibilité de son controle par une source.

- 15 -
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Transfert de la charge par effet tunnel
L’effet tunnel permet de réconcilier ces deux propriétés. Supposons que I'on rapproche une

petite électrode métallique, appelée par la suite “ile”, d’un réservoir de charge tout en les

gardant séparés par une fine paroi isolante (voir figure ci-dessous).

effet tunnel
G_A{:
réservoir i

q=-ne
Ile couplée a un réservoir de charge par l'intermédiaire d’une jonction tunnel.

Les électrons vont alors pouvoir passer par effet tunnel entre l'ilot et le réservoir. Si la
jonction tunnel est suffisament opaque, I’extension des fonctions d’onde électroniques a travers
la jonction sera négligeable, si bien que la quantification de la charge de I'ille en multiple de
e est assurée a un instant donné, mais reste néanmoins susceptible de fluctuer dans le temps
suite aux fluctuations thermiques. La quantité physique caractérisant 1’opacité de la barriére
tunnel est la résistance tunnel Ry (voir encadré 1), dont la valeur doit étre comparée au
quantum de résistance Ry = h/e? ~ 26 k). La localisation de la charge dans I'ile sera ainsi

obtenue pour des résistances tunnel grandes devant le quantum de résistance:
Rr > Rg (1)

Notons que cette relation est analogue au critere de localisation de la charge dans une couche
métallique désordonnée pour laquelle la transition métal-isolant intervient lorsque la résistance

par carré excéde R .

Blocage de la charge par effet capacitif
L’¢énergie électrostatique associée a l'entrée d'un électron dans I'ile est donnée par e?/2C,
ou C est la capacité totale de I'ile. Si cette énergie est rendue grande devant I’énergie carac-

téristiques des fluctuations thermiques kg1 soit :

e2/2C > kT, (2)
- 16 -
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seule la configuration électrostatique d’énergie minimale est sélectionnée. Le nombre d’élec-
trons dans I'ile est alors bien défini lorsque les inégalités (1) et (2) sont simultanément satis-
faites. Cette derniére inégalité est la plus restrictive: elle relie la surface d’une jonction tunnel
qui détermine la capacité de la jonction, & la température d’apparition des effets de charge.
La capacité associée & une jonction tunnel de dimensions latérales typique 0.1 x 0.1 pm?,
vaut 1 fF, ce qui équivaut & une température de 1 K. L’observation des effets de charge
demande donc un effort technologique simultané dans des domaines aussi différents tels que
la fabrication de nanostructures et les techniques cryogéniques. Une telle exigence explique
le développement tardif de ce champ de recherche dont les premiers développements ont tout

juste dix ans.

Controle de la charge par polarisation électrostatique
La charge de I'ile étant fixée par ’énergie électrostatique, celle-ci doit pouvoir étre modifiée
pour permettre le transfert controlé de la charge du réservoir vers I'ile. Ce controle est obtenu

en couplant capacitivement 1'ile & une source de tension (voir figure ci-dessous).

effet tunnel

©

réservoir ol

q=ne =

Représentation du circuit dit de la ”boite a électrons” pour laquelle la charge de l’ile est con-
trolée par la source de tension variable.

Cette tension de polarisation électrostatique, dite tension de grille, permet d’ajuster les
valeurs relatives des énergies électrostatiques associées & des nombres d’électrons dans l'ile
différents: elle modifie ainsi la configuration de charge pour laquelle I’énergie du systéme est
minimale. Un tel controle est & 'origine de “I’électronique a un électron” dont les deux circuits

de base sont décrits dans la suite.

_17 -



encadré 2

La boite a électrons

Rt, Cj Cq

A

Eel y

0.0 0.5 1.0 1.5 2.0

b) b 1 3B | ) CqUle

a) Représentation schématique de la boite a électrons, b) Courbes représentatives de I'énergie électrostatique du circuit pour
différents états de charge c) Mesure expérimentale de I'escalier de Coulomb, en pointillés: prédiction théorique.

encadré 3
Le transistor a un électron
Ri,C;y  RuCj, 054 T=20mK
I L

O s

03 02-01 0 01 02 03
a) b) V(mV)

a) Représentation schématique du transistor a un électron. b) Caractéristiques courant-tension du circuit pour des nombre entiers
(courbe noire) et demi-entier (courbe grise) de nombre de charge de grille ng=Cng/e. c) Energie électrostatique du circuit pour les

deux cas limites.
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La boite a électrons

L’expérience de la boite & électron est conceptuellement la plus simple de ’électronique a
un électron [4]. 1l ’agit exactement du circuit introduit dans le paragraphe précédent.

Le circuit est constitué d’'une jonction tunnel placée en série avec un condensateur et une
source de tension U (voir encadré 2, figure a). La petite électrode métallique située entre
la jonction et la capacité est une ile pouvant recevoir ou donner des électrons a travers la
jonction tunnel. L’expérience consiste & mesurer la charge moyenne de I'ile (Q)) en fonction
de la tension U. La boite est caractérisée par D'énergie de charge E. = €2/2(C; + C,) qui
correspond a ’énergie électrostatique nécéssaire pour ajouter un électron sur l'ile. L’énergie
électrostatique totale du circuit pour un nombre n d’électrons en exceés dans 1'ile est une

fonction quadratique de la tension de grille U:
E, = E.(n—C,U/e)? . (3)

Chaque état de charge n est ainsi représenté par une parabole (voir encadré 2, figure b). Les
transitions vers un état de charge voisin s’effectuent pour les paramétres correspondant aux
points d’intersection des paraboles, qui intervient pour les valeurs demi-entiéres de la charge de
polarisation réduite C,U/e. Lorsque ’énergie caractéristique des fluctuations thermiques kgT
est petite devant ’énergie de charge FE, nécessaire pour ajouter un électron a l'ile, le nombre
moyen d’électrons en exceés dans 'ile (n) varie avec la tension de commande U en décrivant une
série de marches réguliéres, communément appelée “escalier de Coulomb” (encadré 2, figure
c¢). Chaque palier correspond au nombre d’électrons qui minimise 1’énergie électrostatique du
circuit. L’escalier de Coulomb constitue la preuve directe de la quantification de la charge

dans I'ile. C’est en quelque sorte une expérience de Millikan effectuée dans 1’état solide.

Le transistor a un électron

Le transistor & un électron est constitué de deux jonctions tunnel en série. I’ile centrale
est donc connectée a des réservoirs amont et aval (encadré 3, figure a). Il s’agit du premier
circuit d’électronique a un électron réalisé il y a 10 ans [2]. Contrairement a la boite a
électrons ou on réalise une expérience a I’équilibre, on mesure dans le transistor des propriétés
de transport. Le systéme transistor+source est caractérisé¢ par deux degrés de liberté : Le
nombre n d’électrons en excés dans l'ile et le nombre p d’électrons ayant traversé le circuit.

L’expression de I’énergie électrostatique du circuit est la somme d’un terme analogue a celle
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de la boite & électrons (équation (3)) a laquelle il faut ajouter le travail de la source : —peV'.
Comme pour la boite & électrons, la charge n de I'lle & basse température correspond & un
nombre entier d’électrons.

On s’intéresse tout d’abord aux propriétés de transport du dispositif aux faibles tensions,
ceci afin d’estimer la conductance a l'origine de la caractéristique courant-tension

Deux cas limites peuvent étre considérés, suivant les valeurs de la charge de polarisation
réduite n, = C,U/e (encadré 3, figure c).

e Lorsque n, est un entier, seule la charge n = 0 minimise I'énergie électrostatique du
circuit. Le transfert de charge a travers le transistor est donc bloqué pour les faibles tensions,
puisqu’un transfert de charge nécessite un passage par I'état n = 1, que les fluctuations
thermiques ne permettent d’atteindre lorsque la condition (2) est satisfaite. Ce phénoméne
générique aux nanostructures est couramment appelé “blocage de Coulomb”.

e Lorsque n, est demi-entier, les états n = 0 et n = 1 sont dégénérés (voir encadré 3,
figure c¢). Il en résulte un effet tunnel séquentiel d’électrons individuels a travers les deux
jonctions, intervenant suivant une statistique Poissonienne : 1’état de charge de 'ile passe
successivement a travers les états n = 1 et n = 0 par suite d’événements tunnel consécutifs
a travers la jonction amont puis a travers la jonction aval. Le transistor est donc “passant”,
chaque événement tunnel intervenant a4 un taux dont la valeur dépend de la différence d’énergie
électrostatique qu’induit le transfert de charge (cf. encadré 1). Cette différence étant fonction
de la tension de grille (cf. équation (3)), la conductance du transitor est ainsi modulée par
cette tension. La modulation en courant est maximale pour des tensions de V' de I'ordre de
e/C. La période de cette modulation est égale & un électron induit sur 'lle: polarisé a
tension finie, une différence de polarisation électrostatique d’un demi-électron sur
la grille permet de contrdler un courant d’environ 10’ électrons par seconde. Une
telle propriété justifie le nom de “transistor & un électron” donné a ce dispositif, qui constitue
également un électrometre avec une sensibilité inégalée. C’est d’ailleurs ce circuit qui permet
de mesurer la charge de I'ile avec une sensibilité sub-électronique, dans I'expérience de la boite

a électrons décrite dans le paragraphe précédent.
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Introduction
Les effets de charge, dix ans apreés

Une décennie s’est écoulée depuis la réalisation par Fulton et Dolan d’un transistor & un
électron [2]. Dans ce dispositif, décrit dans le préambule, le courant est modulé par la charge
induite sur une capacité de couplage avec une période égale a la charge électronique. Depuis
cette expérience qui marque le début de I’électronique a un électron, de nombreux circuits ont
été développés, tant pour comprendre ce nouveau domaine que pour réaliser de nouvelles fonc-
tions [3]. Comme précisé dans le préambule, tous ces dispositifs & un électron sont constitués
de petites électrodes conductrices couplées entre elles ou au reste du circuit par des jonc-
tions tunnel ou des capacités. Leur fonctionnement repose sur la quantification de la charge
de ces électrodes intermédiaires, appelées iles, lorsque les jonctions sont opaques c’est-a-dire
lorsque leur résistance tunnel est grande devant le quantum de résistance. Dans ce régime, les
électrons sont presque localisés dans les iles, et ’énergie du circuit est simplement I'énergie
électrostatique de la configuration de charges calculée en remplacant chaque jonction par un
condensateur donné par la capacité effective de la jonction. Le passage par effet tunnel d’un
électron a travers une jonction conduit & une nouvelle configuration. A trés basse tempéra-
ture, sont uniquement possibles les transitions conduisant & une configuration dont 1’énergie
électrostatique est inférieure. Ce processus de sélection des configurations de charge des iles
est exploité dans les circuits & un électron. Dans le circuit élémentaire de la boite & élec-
trons [4] (cf. encadré 2), une configuration d’énergie minimale existe et est donc sélectionnée
aux basses températures vérifiant kT < E, = €2/2C, ou C est la capacité de I'ile. Dans le
transistor & un électron, qui est une ile connectée a deux réservoirs, nous avons vu dans le
préambule qu’il n’y a pas toujours de configuration stable vis & vis des transitions tunnel sur
les deux jonctions. La configuration évolue dans ce cas selon une cascade continue et aléatoire
de transitions & travers les deux jonctions, et un courant non nul traverse le circuit. C’est la
dépendance du taux de transition avec la tension de polarisation de I'ile qui est a l’origine
de la modulation du courant. D’autres dispositifs mettent a profit les régles d’évolution pour
transférer la charge électron par électron : dans l'écluse & électrons [5] et la pompe a élec-
trons [6], un signal externe répété a la fréquence f cadence ainsi le passage des électrons un

par un. Le courant a travers le circuit est alors donné par la relation I = ef. Ces derniers
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circuits ont déja été adoptés par les laboratoires de métrologie en vue de la mesure de la con-
stante de structure fine et de la réalisation d’un étalon de 'ampére. Une pompe a 7 jonctions
tunnel en série [7] a ainsi récemment atteint une précision relative égale & 10~ pour une ca-
dence de transfert de 5 MHz. Parallélement a ces développements, plusieurs équipes [8] ont
abordé le probleme de I'extension de l’électronique & un électron aux circuits supraconduc-
teurs. Elles ont montré qu’il était possible de construire une électronique dite “a une paire de
Cooper” combinant les effets de charges aux propriétés intrinseques a la supraconductivité. Il
s’agissait tout d’abord de s’assurer de la robustesse du quantum de charge 2e: les premiéres
expériences [9] ont ainsi montré que la charge d’une ile supraconductrice est un multiple de
2e si I’énergie nécessaire a la création d’une quasiparticule est plus grande que ’énergie de
charge E.. La transposition des concepts de 1’électronique a un électron a 1’électronique a
“une paire de Cooper” ne consiste pas toutefois & seulement doubler la charge des porteurs.
La cohérence quantique du condensat supraconducteur est a l'origine d’un couplage cohérent
entre deux électrodes supraconductrices couplées par une jonction tunnel. Nous lui donnerons
le nom de couplage Josephson puisqu’il est & 'origine d'un effet quantique macroscopique,
leffet Josephson continu, prédit en 1962 par Brian Josephson. La situation rencontré dans ce
cas est trés différente de effet tunnel intervenant entre électrodes “normales” (i.e. non supra-
conductrices), pour lequel le transfert de charge est dissipatif et incohérent puisqu’il aboutit
a la création d’excitations de paires électron-trou décorrélées les unes par rapport aux autres.

L’effet “Josephson” induit une délocalisation des paires de Cooper: il est antagoniste aux
effets de charge qui tendent au contraire & localiser les paires de Cooper dans les iles. C’est
cette compétition entre le couplage Josephson et les effets de charge qui explique notamment
la modulation du courant critique (i.e. courant supraconducteur maximum) observée dans la

version supraconductrice du transistor & un électron [10].
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Les questions abordées dans cette thése

Les succeés obtenus ne doivent toutefois pas masquer le fait que les fondements mémes
de I’électronique & un électron ou a une paire de Cooper ne sont bien compris que dans la
limite ou 'effet tunnel apporte une perturbation faible aux interactions électrostatiques. Le
theme principal de cette thése porte sur les circuits de petites jonctions tunnel, normaux et
supraconducteurs, dans le régime ot le couplage par effet tunnel entre les différentes électrodes
est assez important pour modifier les effets de charge de fagon non perturbative. Tout d’abord,
s’il est couramment admis que la quantification de la charge des iles nécessite des jonctions
tunnel suffisamment opaques, la facon précise dont les effets & un électron s’effacent lorsque
les jonctions deviennent trés passantes n’est pas connue. Que devient dans ce régime le
circuit le plus simple de la mono-électronique, & savoir le transistor a un électron 7 Ce
probléme est abordé dans le premier chapitre de cette thése, dans le but de dégager des
résultats expérimentaux un scénario pour la disparition des effets de charge dans le régime
d’effet tunnel fort.

L’¢électronique a une paire de Cooper, quant a elle, n’a pas été explorée au dela du tran-
sistor supraconducteur [10], ou le phénoméne essentiel qu’est la compétition entre effets de
charge et couplage Josephson n’a été qu’indirectement observé. Peut-on mettre en évidence
cette compétition en mesurant la charge d’une électrode supraconductrice fortement couplée
a un réservoir supraconducteur par une jonction Josephson ? Qu’elle est ’analogue pour les
electrodes supraconductrices de la limite des faibles résistances tunnel (R < Rg) 7 Pour
répondre a ces questions, nous avons réalisé ’expérience de la “boite supraconductrice a une
paire de Cooper” qui constitue la version entiérement supraconductrice de la boite & élec-
trons. Ce nouveau circuit présente également un intérét fondamental du point de vue de la
mécanique quantique, puisqu’elle permet “d’intégrer”, au sens de la microélectronique, un sys-
téme quantique a deux niveaux : I’état quantique fondamental de I'ile correspond en effet a
une superposition cohérente de deux états de charge différant de 2e. Ces développements font
I’objet du chapitre 2 de cette thése.

Cette expérience ne donne toutefois pas accés aux états excités. La spectroscopie des états
quantiques d’un circuit a une paire de Cooper est-elle possible 7 Nous avons imaginé dans ce

but un circuit, plus complexe que la boite supraconductrice, qui comporte deux iles fortement
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couplées. Un signal de radio-fréquence irradiant une ile induit des transitions vers les états
excités. Ces états sont détectés par la variation du courant supraconducteur maximum pouvant
circuler & travers le circuit. Les résultats préliminaires obtenu sur ce circuit sont présentés
dans le troisiéme chapitre de cette these.

Il existe aussi une autre différence extrémement importante entre 1’électronique & un électron
et 1’électronique a une paire de Cooper concernant 'effet de I’environnement électromagné-
tique du circuit. Nous avons considéré jusqu’ici des circuits polarisés en tension. La théorie
du blocage de Coulomb pour les circuits a un électron montre que cette approximation est
excellente si I'impédance entre la source de tension et le circuit est faible devant Rg. Dans
le cas opposé, -qui n’a pu étre qu'imparfaitement réalisé expérimentalement-, la présence
de cette impédance conduit & une réduction de la conductance aux faibles tensions méme
dans le cas d’une simple jonction. Ce comportement non linéaire est dii au partage, lors du
passage d’un électron par effet tunnel, de I’énergie électrostatique disponible entre les modes
électromagnétiques de I'impédance et les degrés de liberté électroniques des électrodes. L’effet
de Ienvironnement sur les circuits & une paire de Cooper n’est connu quant a lui que dans la
limite des faibles couplages Josephson. Lorsque le couplage Josephson est fort, la question qui
se pose naturellement est de savoir si le courant critique qui peut traverser une jonction est
affecté par 'environnement électromagnétique. Ce probléme du blocage de Coulomb de effet
Josephson est abordé théoriquement dans le chapitre 4 de cette these.

Comme signalé plus haut, les applications présentes de 1’électronique & un électron sont la
métrologie, avec 1’écluse et la pompe & électrons, et I’électrométrie, avec le transistor & un
électron. La sensibilité de ce dernier dispositif est d’ailleurs exploitée pour mesurer la charge
de I'ile dans toutes les expériences du type boite a électrons. La précision sub-électronique
obtenue mérite & elle seule de l'interét. De facon générale, quels sont les mécanismes qui
limitent la détection de charge 7 Comment se comparent des transistors fabriqués de différentes
facons 7 Peut-on utiliser un transistor a un électron pour détecter sans les perturber des
particules chargées 7 Ces questions sont discutées dans le chapitre 5.

Les expériences réalisées pour cette these utilisent des circuits de petites jonctions tunnel
fabriqués au laboratoire pour la plupart par lithographie électronique. Plus généralement,
toutes les considérations sur I’électronique & un électron ou I’électronique a une paire de Cooper

n’ont d’intérét que si I'on parvient a fabriquer les circuits imaginés. La complexité croissante
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de ces circuits nécessite notamment des techniques de fabrication plus souples autorisant plus
de fonctionalités. Peut-on intégrer dans le méme circuit des jonctions, des condensateurs et des
résistances 7 Existe-t-il d’autres méthodes générales de nanofabrication outre la lithographie
électronique 7 Les procédés de fabrication que nous avons développés pour répondre & ces
questions sont décrits dans le chapitre 6.

Les principaux résultats obtenus sur les questions abordées dans cette thése sont résumés

dans les paragraphes qui suivent.

Le transistor a un électron dans le régime passant Ry < R«

De facon surprenante, le comportement du simple transistor & un électron dans le régime
“passant” Rr < Ry n’est qu’en partie élucidé du point de vue théorique, et les résultats
expérimentaux publiés se limitent a constater I’affaiblissement des effets de charge. La relative
absence de résultats expérimentaux s’explique notamment par la difficulté de déterminer les
paramétres du transistor de facon indépendante, en particulier I’énergie de charge de l'ile
EY = ¢€2/2C ou C est la capacité de I'ile en absence d’effet tunnel. Nous avons résolu cette
difficulté en mesurant, pour le méme transistor rendu supraconducteur par la suppression
du champ magnétique, la position dans le plan U — V,, de résonances en courant récemment
identifiées. Nous avons mesuré la conductance G' de plusieurs transistors d’énergies de charge
E? voisines mais de résistances tunnel Ry différentes variant dans la gamme 5—100 k2 donc
s’étallant de part et d’autre du seuil R = Rg.

Les variations de G avec la charge de polarisation réduite n, = C,V,/e et la tempéra-
ture sont portées sur la figure 1 pour des valeurs de résistance tunnel respectivement grandes
et de l'ordre du quantum de résistance. Les différences entre les deux réseaux de courbes
sont particuliéerement notables a basse température. Pour le transistor “peu passant”, les pics
de conductance sont fins et ont une valeur maximale proche de la moitié de la conductance
asymptotique a haute température. Ce comportement est bien celui prévu par le modeéle de
transfert séquentiel de la charge par les deux jonctions briévement décrit dans le préambule.
Les pics correspondent aux valeurs de n, pour lesquelles deux états de charge de I'ile ont la
méme énergie. Pour le transistor “passant”, les pics restent larges et continuent de diminuer
jusqu’aux plus basses températures explorées. Cet effet, récemment étudié théoriquement, est

semblable a I'effet Kondo : 1’état quantique de I'ile restreint a deux états de charge voisins est
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Figure 1. Mesures de la conductance réduite de transistors a un électron en fonction de la
charge de grille n, a diverses températures. Les deux régimes sont ici présentés. En haut, le
transistor auz jonctions résistives (R ~ 85 k), présente des pics de conductance ¢ nyg = 1/2
étroits a basse température dont le maximum atteint la moitié de la conductance asymptotique
Go, (valeur prédite par la théorie de Ueffet tunnel séquentiel). En bas, le transistor posséde des
jonctions passantes ( Ry ~ 21 K) ~Rg ) et les pics de conductance restent larges a ny = 1/2,
leur mazimum continuant a décroitre a basse température.
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I’analogue du spin, et les excitations tunnel sont les analogues des excitations électroniques.
Le scénario suivant se dégage de I’ensemble des résultats expérimentaux : A haute tempéra-
ture, la conductance d’un transistor “passant” se comporte comme celle d’un transistor peu
passant mais avec une énergie de charge renormalisée E¢// < E?, effet étant d’autant plus im-
portant que la résistance tunnel est petite devant Ry . Cette description reste valable jusqu’a
des températures inférieures & E°/kp. A plus basse température, la modulation de la conduc-
tance par les effets de charge diminue progressivement. La comparaison avec les prédictions
théoriques prenant en compte 'effet tunnel a tous les ordres en perturbation reste délicate car
ces théories font intervenir des parametres renormalisés non déductibles de ’expérience. Nous
présentons également les résultats d’un calcul trés récent ol le hamiltonien tunnel est développé
au deuxieme ordre en perturbation qui rend bien compte des résultats expérimentaux tant que

la résistance n’est pas trop petite devant le quantum de résistance.

L’effet Josephson a une paire de Cooper dans la boite supraconductrice

L’expérience de la boite a une paire de Cooper constitue 1’analogue supraconducteur de
la boite a électrons présentée dans le préambule : Le circuit est constitué d'une petite jonc-
tion Josephson en série avec un condensateur et une source de tension U (voir cartouche
figure 2). La petite électrode supraconductrice entre la jonction et la capacité est une ile pou-
vant échanger des paires de Cooper a travers la jonction avec un réservoir supraconducteur.
L’énergie électrostatique de cette ile peut étre modifiée en variant la tension de polarisa-
tion U. L’expérience consiste a mesurer la charge moyenne en exces dans I'ile en fonction de
U. Cette mesure s’effectue en couplant capacitivement 1’ile & un électromeétre de sensibilité
sub-électronique qui n’est autre qu’un transistor a un électron décrit dans le préambule.

Dans la boite a électrons, les effets de charge, qui tendent & quantifier le nombre de charges
en exces dans I'ile, sont uniquement en compétition avec les fluctuations thermiques. Dans la
boite a paires de Cooper, le couplage Josephson qui tend & délocaliser les paires de Cooper
doit de plus étre pris en compte.

Le circuit est concu pour que 'énergie de couplage Josephson notée E; soit légerement
inférieure & I’énergie electrostatique de I'ile: E. = €*/2C, ou C' est la capacité totale de I'ile.

Dans 'expérience que nous avons réalisée, le nombre moyen de paires de Cooper en exces

(n) est une fonction de la tension U en forme d’escalier, indépendante de la température pour
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1 ~ ———exp T=20 mK
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C,U/(2e)

Figure 2. Variations de la nombre moyen de paires de Cooper en excés (n) dans la boite o paires
de Cooper en fonction de la tension de commande réduite CyU/(2€). La courbe expérimentale
obtenue a 20 mK (trait plein) est comparée & la prédiction théorique (en pointillés).
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T < 80 mK, et dont la hauteur de chaque marche est égale a paire de Cooper (voir figure
ci-contre). Chaque palier correspond au nombre de paires de Cooper qui minimise 1’énergie
électrostatique du circuit. Sur un palier, le circuit se trouve dans un état quantique ou le
nombre de paires dans I'ile est bien défini. Par contre la transition entre deux paliers successifs
garde une largeur finie a basse température en raison du couplage Josephson qui induit des
fluctuations quantiques lorsque 1’énergie séparant deux configurations de charge voisines est
inférieure & E;. Dans la plage de transition, ’état quantique du circuit est une superposition
cohérente des deux états de charge voisins |[n) et |n + 1). Au milieu de la marche, le circuit
est ainsi dans 'état % (In) +|n + 1)), la pente de la courbe en ce point est égale au rapport
de I’énergie électrostatique d’une paire de Cooper 4F, sur ’énergie Josephson F;, énergies qui
peuvent étre évaluées indépendamment. La courbe théorique tracée pour ces valeurs est en
bon accord avec la courbe expérimentale. Cette expérience, qui constitue I’observation directe
de Veffet Josephson mettant en jeu une unique paire de Cooper, réalise un état de cohérence

quantique pour un systéme macroscopique.

Le blocage de Coulomb de l'effet Josephson

Le systéme que nous avons étudié est formé d’une jonction Josephson de courant critique I
en série avec une impédance supraconductrice arbitraire. On impose une phase 6 aux bornes
du systéme. Une telle polarisation peut s’effectuer en refermant le circuit sur lui-méme et en
appliquant un flux magnétique a travers la boucle ainsi formée (voir figure 3).

Le hamiltonien de ce systeme est la somme du hamiltonien Josephson et du hamiltonien de
I'environnement. L’état fondamental correspond a un courant non nul 7 (¢) dont 'expression
en I’absence d'impédance est donnée par la relation de Josephson I (§) = Ipsiné. Nous avons
tout d’abord effectué un calcul champ moyen de ce courant et trouvé que le courant supracon-
ducteur maximum /. est d’autant plus diminué par rapport a I, que I'impédance est grande.
Ce phénomeéne peut étre considéré comme un blocage de Coulomb de leffet Josephson. Nous
avons comparé les prédictions de ce calcul au résultat exact obtenu numériquement pour un
environnement comportant un seul mode (cas ou I'impédance en série est une pure induc-
tance). Par analogie avec le systéme spin-boson, nous avons modifié le calcul champ moyen
pour incorporer les effets de renormalisation des modes de basse énergie de I’environnement.
Dans I'état fondamental, ces modes sont en effet éliminés car la modification de leur état ne

colite pas d’énergie. Nous avons ainsi obtenu le facteur de renormalisation du courant critique
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0=21td/D,

Figure 3. Représentation schématique du circuit : une jonction Josephson caractérisée par
Uénergie de couplage Josephson Ej est mise en série avec une impédance Z(w). Le dipdle
ainst formé est polarisé en phase par une boucle coupant un flux magnétique ®. Il s’agit de
trouver le courant supraconducteur mazximum de la jonction pour une impédance Z donnée.

pour une impédance arbitraire. Cette expression généralise le résultat récemment obtenu par
d’autres auteurs dans un cas particulier d’environnement. Nous avons ensuite repris le cal-
cul en ne supposant pas I'existence du hamiltonien Josephson mais en partant du hamiltonien
tunnel. Nous avons combiné des résultats précédemment obtenus sur la modification du hamil-
tonien Josephson par une impédance avec nos résultats pour déterminer 1’expression générale

du courant critique en fonction de la résistance tunnel de la jonction et de 'impédance du

circuit.

Application & I’électrométrie du transistor & un électron

Nous avons évalué les performances des transistors a un électron en mesurant leur bruit. A
basse fréquence, ce bruit est d’origine extrinséque : le déplacement des charges environnantes
modifient la charge induite sur I'ile et par suite le courant mesuré. Nous avons mis en évidence
I'importance des fluctuateurs chargés, sources de bruit télégraphique au voisinage immédiat ou
dans la barriére des jonctions tunnels. Nous avons comparé les bruits de transistors fabriqués
sur différents substrats et ayant des iles de différentes tailles. Ces mesures nous permetent
notamment de conclure que le niveau moyen du bruit en charge (voir figure 4) ne dépend pas
de la nature chimique du substrat.

La compréhension du couplage électrostatique de charges extérieures ponctuelles & un élec-

trometre nous a permis d’envisager 'utilisation d’un transistor a un électron pour détecter le
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Figure 4. Densité spectrale du bruit en charge typique d’un transistor a un électron mesurée a
20 mK. Le bruit en 1/f observé est attribué a la superposition des bruits télégraphiques émis
par des dipdles fluctuants au voisinage de l’ile du transistor. Le niveau de bruit de référence
est de 3 x 10~* e.Hz Y2 ¢ 10 Hx.
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mouvement de particules chargées (voir figure 5).

Figure 5. Schéma d’un dispositif utilisant un transistor a un électron polarisé en tension pour
détecter la position d’une particule chargée. La charge q induit une charge 6q sur l'ile du
transistor. Les déplacements de la charge sont mesurées par la variations du courant dans le
transistor.

Un tel dispositif pourrait en effet s’avérer utile pour une mesure délicate de physique des
particules : Nous avons montré que la sensibilité d’un transistor & un électron rend concevable
la mesure de la masse gravitationnelle d’antiprotons effectuant un mouvement unidimensionnel
le long de 'axe d’'un tube équipotentiel. Nous avons estimé que le transistor & un électron
posséde un niveau de bruit suffisant bas pour de telles mesures. En outre il apporte une
perturbation electromagnétique en retour sur la particule qui ne masque pas leffet de la

gravitation.
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Techniques de fabrication

Les circuits & un électron, qui comportent des détails de taille inférieure & 100 nm, sont
obtenus par lithographie électronique. Cette technique est universellement utilisée pour fa-
briquer des nanostructures dont les dimensions sont bien controlées : le faisceau d’électrons
accéléré dans une colonne de microscope a balayage vient altérer localement une résine électro-
sensible conduisant & la réalisation d’un masque. D’autres techniques de lithographie mettant
a profit les microscopes a sonde de proximité (STM, AFM, etc.) ont été proposées mais elles
sont trop spécifiques pour s’appliquer a la fabrication de circuits & un électron.

Nous avons développé une technique générale de lithographie basée sur le microscope a
force atomique (AFM). Dans ce nouveau procédé, la pointe effilée du microscope vient creuser
un sillon étroit dans une couche molle de polyimide (figure 6). Ce sillon est ensuite transféré
dans une couche mince de germanium qui sert de masque pour l’évaporation des couches
constituant la nanostructure. Nous avons fabriqué a 'aide de cette technique un transistor a
un électron de performances équivalentes a celles de transistors fabriqués selon les techniques

conventionnelles.
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Figure 6. Procédé de fabrication de nanostructures a l'aide d’un microscope a force atomique
(AFM). La pointe du microscope, appliquée en fort contact (force ~ uN) sur la couche molle
de polyimide y creuse un sillon (haut). La couche de polyimide, amincie sous le sillon, ne
protége plus le masque sous-jacent de germanium lors de l’attaque par gravure séche, ce qui
aboutit au percement du masque sous le sillon. La nanostructure est obtenue par évaporation
a travers le masque de couches métalliques, masque qui est finalement retiré, dégageant les
structures évaporées dont la taille latérale est de ['ordre de 40 nm.
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Par ailleurs, les développements de ’électronique & un électron conduisent & imaginer des
circuits de plus en plus complexes. Ceux-ci nécessitent 'intégration croissante de fonctionalités
impossibles & réaliser sur une seule couche conductrice. Nous avons donc développé une
technique de fabrication en multicouches qui offre comme nouvelles fonctions de pouvoir établir
des connexions ou des couplages capacitifs avec un circuit préalablement fabriqué, “enterré”
sous une couche séparatrice isolante et percée aux points de connexions (voir figure 7). Cette
technique permet ainsi le controle de I’environnement électromagnétique de circuits & une paire

de Cooper et la réalisation de lignes blindées pour I'injection de signaux radio-fréquence.

Figure 7. Micrographie prise au microscope electronique a balayage d’un circuit multicouche
composé d’une boite & paires de Cooper (en haut & gauche) couplée a un électrométre (en bas a
droite). La nanostructure a été déposée sur une couche isolante de polyimide percée en 6 points
(cercles sombres) pour contacter des fils d’or sous-jacents. La polarisation électrostatique des
iles s’effectue grace a des capacités enterrées dont les armatures inférieures sont les extrémités
des deuz fils non découverts.
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Introduction
Single charge effects : ten years after

Ten years have passed since the realization by Fulton & Dolan of the first single electron
transistor (SET) [2]. In this device, the current is modulated by the charge induced on a cou-
pling capacitor, with a period equals to the electronic charge (see frame). This experiment
marked the beginning of single electronics. Many other devices have since been realized, with
the aim of understanding this new emerging field and exploring new electronic functions [3]
. All these single electron devices are made of small conducting electrodes coupled to each
other and to the rest of the circuit by tunnel junctions or capacitors. Their operating princi-
ple is based on the quantization of charge in intermediate electrodes, nicknamed islands, when
the tunnel junctions are sufficiently opaque. More precisely, when the tunnel junction resis-
tances Ry far exceed the resistance quantum Ry = h/e? ~ 26 k), the charge of each island
corresponds to an integer number of electrons. Electrons are localized in the islands and the
energy of the system is given by the electrostatic energy for which tunnel junctions are re-
placed by equivalent capacitances. When an electron tunnels through a junction, a new energy
configuration is generally obtained. At very low temperature, only transitions towards con-
figurations with lower electrostatic energies are possible. Single electron devices exploit these
selection processes. In the single electron box [4] (see inset), a unique minimum configuration
is selected when kpT < E. = €?/2C, where C is the total island capacitance and F, the as-
sociated charging energy. In the single electron transistor composed of an island connected to
two reservoirs, there is not always a stable configuration with respect to tunnel transitions
through each junction. In such a case, the circuit state evolves in a continuous cascade of
random transitions through both junctions and a finite current flows through the whole cir-
cuit. The dependence of transition rates on the island polarization voltage induces the current
modulation. Other devices exploit evolution rules and enable the transfer of charges one by
one: in the “turnstile” [5] and the “pump” devices [6], an external signal at a frequency f
clocks the transfer of electrons. The current through the circuit is then given by the funda-
mental relation I = ef. This last device has been chosen by metrologists to realize a current
standard and to provide a precise measurement of the fine structure constant . A 7-junctions

pump operated at 5 MHz has already reached a relative precision of 1078 [7].
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The electron box consists of a tunnel junction in series with a capacitance Cq and a voltage

source U. The small metallic electrode between the junction and the capacitance is an island

exchanging electrons through the junction. When the characteristic energy of thermal
fluctuations kgT is small compared to the charging energy Ec=e2/2(Cj+Cg) corresponding to

the cost for adding an extra electron to the island, the average number <n> of electrons in
the island is a step-like function of the voltage U so-called "Coulomb staircase". Each
plateau corresponds to the number of electrons which minimize the electrostatic energy of
the circuit. Transitions to the next step occur when the electrostatic energy of the two
neighboring charges states are equal. This is obtained for half-integer values of the reduced
polarization charge CqU/e.

0.0

The single electron transistor (SET)
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The single electron transistor consist of two ultrasmall tunnel junction in series. The
intermediate electrode (island) is capacitively coupled to a voltage Vg. As for the electron
box, the island charge at low temperature is equal to an integer number of electrons. The
current results from sequential tunnel effect of single electrons through both junctions. Each
tunnel event occurs at a rate which depend of the change in electrostatic energy that it
induces. Since the electrostatic energy of the island depends on the gate voltage, the
current through the whole device is periodically modulated by the gate voltage. In a voltage
biased SET, the current modulation is maximum for bias of the order of e/C (see curves).
This modulated period is equal to one induced electron on the island. electrostatically
coupled to a measurement, this device is an electrometer with a sub-electronic charge
sensitivity. It has been used to measure the charge of the electron box described above.
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Meanwhile, several groups [8] have investigated the extension of single electronics to super-
conducting circuits. The first experiments [9] have shown that the charge of a superconduct-
ing island is a multiple of 2e, if the energy necessary to create a quasi-particle is larger than
the charging energy. The adaptation of single electron concepts to a newly developed “single
Cooper pair electronics” does not merely consist in doubling the carrier charges. The quantum
coherence of the superconducting condensate leads to a strong coupling between two super-
conducting electrodes separated by a tunnel junction (i.e. a Josephson junction). This tends
to delocalize Cooper pairs and therefore counteracts charging effects which tend to spatially
localize charges in islands. The modulation of the critical current (i.e. maximum supercurrent)
in the superconducting version of the SET originates from this competition between charging

effects and the Josephson effect [10].

The questions addressed in this work

The achievements previously mentioned should not hide the fact that the foundations of
single charge tunneling are still not well settled: A good understanding is only provided in
the limit of a perturbational tunnel effect with respect to electrostatic interactions. The main
subject of this thesis concerns normal and superconducting circuits composed of small tunnel
junctions in which the tunnel coupling is strong enough to alter significantly charging effects.
First of all, if it is currently agreed upon that charge quantization in islands necessitates
sufficiently opaque tunnel junctions, the way these single charge effects are washed out when
tunnel junctions become transparent is not known. How does the single electron transistor
behave in this regime? This issue is reviewed in the first chapter of this thesis, in which
experimental results suggest a scenario for the vanishing of charging effects in the strong
coupling regime.

On the other hand, single Cooper pair electronics has not been investigated beyond the
superconducting transistor where competition between charging effects and the Josephson
effect is only indirectly observed. Is it possible to show directly this competition by measuring
the charge of a superconducting electrode strongly coupled to a superconducting reservoir of
charges? For this purpose, we have realized the experiment called “the single Cooper pair

superconducting box”, described in the second chapter of this thesis.
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This experiment is also of fundamental interest regarding quantum mechanics since the
ground state of the island, which is a coherent superposition of two charge states differing by
2e, can be directly probed. However, this experiment gives no information on excited quantum
states.

Is the spectroscopy of the quantum states in a single Cooper pair circuit possible? We
have considered a novel circuit, more complex than the superconducting box, in which two
islands very strongly coupled to each other are placed in a superconducting transistor. A
radio-frequency signal irradiating one island induces transitions to excited states. These states
are probed by the change of the critical current flowing through the whole circuit.

Very preliminary results on this system are presented in the third chapter of this thesis.

Another essential difference between single electronics and single Cooper pair electronics
regards the action of the electromagnetic environment. Up to now, we have only considered
voltage biased circuits. The Coulomb blockade theory for single electron circuits shows that
this approximation is excellent if the impedance between the voltage source and the circuit
is much lower than the resistance quantum Ry. In the opposite case, which has been only
imperfectly realized experimentally, the impedance in series reduces the conductance at low
voltages even if it is connected to a single junction. This reduction can be explained by the
excitation of electromagnetic degrees of freedom of the impedance due to the tunneling of a
single electron.

On the other hand, Coulomb blockade theory for Single Cooper pairs circuits is only known
in the limit of low Josephson coupling. In the case of strong Josephson coupling, one can won-
der whether the maximum supercurrent that can flow through a single junction is reduced by
the electromagnetic environment. The problem of Coulomb blockade of Josephson tunneling
is theoretically treated in the chapter 4.

Recent applications of single electronics can be found in metrology with the development of
the turnstile and the electron pump and in charge detection with the single electron transistor.
We take advantage of the sensitivity of this latter device to measure the island charge in the
electron box experiment. What mechanisms set the detection limit? Can we compare SET's
fabricated with different methods? Can these devices be used to monitor the position of charged
particles? We try to provide answers to these questions in chapter 5.

All experiments described in this thesis are based on circuits with small tunnel junctions
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and metallic islands fabricated in the laboratory using electron beam lithography. In the same
way, any consideration regarding single electronics are of interest only if one can fabricate the
envisioned circuits. The increasing complexity of these circuits necessitate more versatile tech-
niques which implement new features. Can one succeed in integrating on one chip ultrasmall
junctions, capacitors with overlap and resistances? Are there other general-purpose techniques
that allow us to fabricate nanostructures? Novel fabrication methods developed during this
thesis are described in chapter 6.

The main results obtained in this thesis for the different fields mentioned above are sum-

marized in the following paragraphs.

The single electron transistor in the high transparency limit r, < R«

Surprisingly, the behavior of a simple single electron transistor is only partly solved theo-
retically in the high transparency limit Ry < Rg. On the other hand, experimental results
are limited to observing the weakening of charging effects. The relative lack of experimental
results can be explained by the difficulty to determine independently the transistor parame-
ters, in particular the charging energy E° = €2/2C where C is the island capacitance without
tunneling. We have solved this problem by obtaining an independent determination of F,. .
This was done by measuring resonance positions in the U — V, space for the same transis-
tor but in the superconducting state, obtained by suppressing the applied magnetic field. We
have measured the conductance G of several transistors with similar charging energies E° but
with different tunnel resistances Rp in the interval 5 — 100 k2.

The measured dependence of the reduced conductance G /Gy with the reduced polarization
charge n, = C,V, /e and with temperature are plotted on figure 1 for values of Ry respectively
much larger and a bit smaller than the resistance quantum. Differences between the two sets
of curves are especially clear at low temperatures. For the “low transparency” transistor,
conductance peaks are sharp and reach a maximum value close to half the high-temperature
asymptotic conductance. This behavior is well predicted by a model based on the sequential
transfer of charge through both junctions. Peaks occur for gate chargesn, for which two charge
states have the same energy.

In a transparent transistor, conductance peaks stay broad but with a decreasing width
which still decrease at the lowest explored temperatures. This effect, recently investigated

theoretically, is similar to the Kondo effect: the two neighboring island states is analog to

-4] -



INTRODUCTION

10 T T T T

+ B 1055 mK
—— 969 mK
—— 796 mK
—— 630 mK
—— 535 mK
—— 406 mK
—— 303 mK
—— 199 mK
—— 104 mK
—— 50.6 mK
—ee 30.5 mK
——10.2 mK

1.0

77777 7900 mK
""" 1220 mK
—=— 763 mK
—— 452 mK
—— 335 mK
—— 231 mK
—— 180 mK
—— 119 mK
——70.5mK
—— 46.5 mK
—— 228 mK
—— 17.3 mK

I

0.0 : 1.0
Ng=Cg4Vyle

Figure 1. Normalized conductance of the SET as a function of the gate chargen, for respec-
tively large junction resistances (top : Ry =~ 85 K)) and for junction resistances of the order
of the resistance quantum (bottom: Rs ~ 21 k) ~Ry ) measured at increasing temperatures.
Note that at low temperature the conductance atn, = 1/2 decreases continuously down to zero
for the weak junction SET whereas it stabilizes near the classical value G/G = 0.5 for the
most resistive SET.
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the spin, and tunnel excitations are equivalent to electronic excitations. Experimental results
suggest the following scenario: at high temperature, the transparent transistor conductance
behaves like a low transparency transistor but with a renormalized charging energy E¢// < E°
with a stronger renormalization for lower tunnel resistances Ry. This description remains valid
for temperatures down to EY/kp. For the lowest temperatures, the conductance modulation
steadily decreases as predicted by the Kondo model. A quantitative comparison with theory has
not however been possible because the model uses an effective Hamiltonian which renormalized

parameters have not yet been theoretically calculated.

Quantum fluctuations in the single Cooper pair box

The experiment of the superconducting box is the superconducting analog of the electron
box presented in inset. The circuit consists of an ultrasmall Josephson junction in series with a
capacitance C,; and a voltage source U (see figure 2). The metallic superconducting electrode
between the junction and the capacitance is an “island” which can exchange Cooper pairs
with a superconducting reservoir through the Josephson junction. The electrostatic energy
of this island is controlled by the voltage U on the gate capacitance C;,. The experiment
consists in measuring the average excess charge of the island as a function of U. As in the
electron box experiment, this measurement is obtained by electrostatically coupling the island
to an electrometer with sub-electronic sensitivity which is a single electron transistor. In the
electron box, the charging effects that led to the quantization of the charge in the island
were in competition only with thermal fluctuations. In this Cooper pair box, the Josephson
coupling, which tends to induce quantum fluctuations of the number of Cooper pairs must
also be considered.

The circuit is designed so that the Josephson coupling energy E; is a bit smaller than the
characteristic charging energy of the circuit E, = ¢?/2C where C' is the total capacitance of
the island. In the realized experiment, the average number of excess electrons (n) is a step-like
function of the voltage U, which is temperature independent below 100 mK. The step height
is equal to one Cooper pair (see figure 2) and each plateau corresponds to the number of
Cooper pairs which minimizes the electrostatic energy of the circuit. On such plateaus, the
circuit is in a quantum state for which the number of charges in the island is well defined.
On the other hand, due to the Josephson coupling which induces large quantum fluctuations

of the island charge when the energy difference between two neighboring charge states is
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lower than Ej, the transition width between two successive plateaus remains finite at low
temperature. In this domain, the quantum state of the circuit is in a coherent superposition
of the two neighboring charge states |n) and |n+1). At the middle of the transition, the
quantum state of the circuit is % (In) + |n + 1)) . The slope of the step at this point directly
reflects the competition between the Josephson effect and charging effects since it is equal to
the ratio of the superconducting charging energy 4E,, over the Josephson energy E;, these two
energies being measured separately. The theoretical prediction plotted for these values with

no adjustable parameters is in good agreement with the experimental data.
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Figure 2. Average number of excess Cooper pairs (n) in the superconducting box as a function
of the reduced gate voltage C,U/(2e). The experimental curve obtained at 20 mK (solid line) is
compared to the theoretical prediction (dashed curve).

This experiment provides the direct observation of the Josephson effect which involves a
single Cooper pair. It is also the realization of a quantum coherent state for a macroscopic

system.

- 44 -



INTRODUCTION

The Coulomb blockade of the Josephson effect

The system we have considered consists of a Josephson junction with critical current Iy in

series with an arbitrary superconducting impedance. A phase ¢ is imposed across the system.
Such a bias can be performed by closing the circuit and applying a magnetic flux through the

loop that is formed (see figure 3).

>< ! Z(m)

0=21td/D,

Figure 3. Schematic diagram of the circuit. A Josephson junction characterized by its Joseph-
son energy E; is placed in series with a impedance Z(w). The obtained dipole is phase-biased
by applying magnetic flux ® in the loop. The issue consists in obtaining the maximum super-
current that can flow through the junction for a given impedance Z.

The Hamiltonian describing this system is the sum of the Josephson Hamiltonian and the
Hamiltonian of the electromagnetic environment. The fundamental state is associated with a
finite current 7(6) flowing through the loop which expression without environment is given by
the Josephson relation: I(6) = Ipsiné. We first performed a calculation based on the mean-
field approximation and found that the maximum superconducting current /. is all the more
reduced with respect to Iy that the environment impedance is high compared to Rx. This phe-
nomenon can be considered as a Coulomb blockade of the Josephson effect. We have compared
these predictions with the exact computation in the simple case for which the environment
is a single-mode oscillator (the serial impedance is then reduced to a pure inductance). By
analogy with the spin-boson system, we have modified the mean-field calculation in order to
take into account the renormalization of low-energy modes. In the ground state, these modes
are eliminated because their modification does not lead to an energy cost. We then calculated

the renormalization factor for an arbitrary impedance. This expression provides a general re-
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sult, obtained by other authors only in the case of a specific environment. In a second step,
we resumed the calculation ignoring the Josephson Hamiltonian and beginning directly from
the tunnel Hamiltonian. We have finally used the previous results on the modification of the
Josephson Hamiltonian to determine a general expression of the critical current as a function

of the tunnel resistance of the junction, for an arbitrary environment impedance.

Charge detection using the single electron transistor

We have characterized single electron transistors by measuring their noise levels.

In the low-frequency range, the noise originates from an external cause: random motion
of charges in the vicinity of the SET induces a fluctuating polarized charge on the island
and leads to a noisy current in the device. We have compared the so-called “charge-noise” of

transistors with islands of different size, fabricated on different substrates (see figure 4).

1072

{Egi 107
g ]
\Q_.)/ |

o
104
107 BN EE R 1
1071 10Y 10t 10

f(Hz)

Figure 4. Typical noise spectral density of a SET transistor measured at 20 mK. The 1/f
noise observed is attributed to the superposition of uncorrelated telegraphic noises emited by
fluctuating dipoles in the vicinity of the transistor island. The noise level reference is3 x 10~*
e.Hz7Y? at 10 Hx.

These measurements indicates that the average charge noise level does not seem to drama-

tically depend on the chemical nature of the substrate nor on the island size, since the noise
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appears to be dominated by a small number of charged fluctuators.

Considering the electrostatic coupling between an external charge and the SET island is also
of some interest in electrometry. For that purpose we have considered the position monitoring
of individual charged particles by single electron transistors. Such a method might be useful for
critical measurements in particle physics. We have shown that the very high charge-sensitivity
of the SET makes possible the measurement of the gravitational mass of antiprotons moving
back and forth along the axis of a drift tube. We have estimated that a SET with a high-
frequency bandwidth has a sufficiently low noise level to allow such a detection. Our calculation
suggests that back-action noise of the SET on the particle would not wash out the tiny

gravitation effect.

Figure 5. Schematic of a voltage biased single electron transistor used to monitor the trajectory
of a charged particle. The charge q induces a time dependent 6q on the transistor island which
18 measured by detecting the current I through the device.

Fabrication techniques

Single electron devices, which contain details with lateral dimensions below 100 nm are
now routinely obtained using electron beam lithography. This technique is widely used to
fabricate nanostructures with well-controlled geometries: an electron beam accelerated in

an electron microscope locally expose a specific resist, leading to the realization of a mask.

_47 -



INTRODUCTION

Engraving
polyimide
/ germanium
PMMA-MAA
S gold pad
Eadi— Si ox. substrate
furrow\ dry etching suspended mask
15-20nm _ ‘ 4 \
5,150 T——— 7
0.2-0.3 um

deposition

lift-off %/

h
= — =
7

Figure 6. Sketches depicting the AFM-based nanolithography process. A sharp AFM tip en-
graves a furrow in a soft polyimide layer (top). The resulting scratch is transferred using
dry etching into a solid mask of germanium. This is finally used to evaporate metallic layers
through the obtained slit. Typical tip-dependent resolution lie around 40nm.

Other nanolithography techniques using recently developed proximal probe microscopy (AFM,
STM) have been proposed but they were by far too specific to apply for the fabrication of
single electron devices.

We have developed a general lithography technique based on the atomic force microscope
(AFM). In this new process, the sharp tip of an atomic force microscope engraves a narrow
“furrow” in a soft layer of “freshly baked” polyimide (figure 6).

This furrow is then transferred to a thin germanium layer which forms a mask for the
deposition of layers constituting the nanostructure. Using this technique, we have fabricated
single electron transistors with characteristics similar to those fabricated using conventional
electron beam lithography.

New developments in single electronics lead to imagine more complex circuits. These require

an increased integration of features which is impossible to obtain using a single conducting
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layer. For that purpose, we have developed a fabrication technique leading to multilayered

circuits. (see figure 7).

Figure 7. Scanning electron micrograph of a multilayer device: It consists of a single Cooper
pair box (top left) coupled to an electrometer (bottom right). The nanostructure has been de-
posited onto an insulating polyimide layer (dark circles) for contacting the gold fingers under-
neath. Electrostatic polarization is performed using the two burried leads.

Such a technique offers new possibilities such as interlayer connections, capacitive coupling
between layers. It also enables the control the electromagnetic environment of single Cooper

pair devices, and the realization of shielded gates for microwave radiations.
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Chapter 1

The single electron transistor in the
strong tunneling regime Ry < R

Introduction

Single electronics is based on the quasi-perfect quantization in units of e of the charge of
small islands only coupled between them or to charge reservoirs through large resistance tunnel
junctions. This phenomenon of charge quantization in single electron devices strongly resem-
bles electron localization in disordered materials. Not surprisingly, charge quantization holds
when the tunnel junction resistances Ry are larger than the resistance quantum Ry = h/e”.
This condition defines the weak tunneling regime in which single electron devices are usu-
ally operated. The question of the robustness of charge quantization with respect to quantum
fluctuations in the strong tunneling regime R; < R is obviously fundamental in the field of
single electronics. In this regime one expects qualitatively that virtual electron hole tunnel-
ing at the barriers will somewhat screen the island charges and suppress charge quantization.
One should notice that this problem is not only important for the basic understanding of
single electronics, but has also practical implications for device optimization. From the theo-
retical point of view, there is presently no comprehensive theory of single electron devices in

the strong tunneling regime. The problem belongs in fact to the class of difficult many-body



CHAPTER 1 THE SET IN THE STRONG TUNNELING REGIME

problems, and the theoretical effort has focussed on the simplest circuits, namely the single
electron box and the SET. Apart from perturbational expansions, the methods used are based
on the functional integral and on the renormalization group. In the case of the single electron
box, these theories have also been completed by quantum Monte Carlo numerical calculations.

From the experimental point of view, the strong tunneling regime has only been observed
in electron gas junctions by taking advantage of the junction modulation using gates. One
should note that tunnel junctions between bidimensional electron gases have a small number
of transmission channels with transmissions that can reach unity, whereas metallic tunnel
junctions have a large number of channels with always small transmissions. We report in this
chapter our investigation of the strong tunneling regime in metallic single electron transistors.
We have chosen the SET rather than the single electron box mainly because the measurement
of the conductance is far more accurate than the measurement of the box Coulomb staircase
and because the SET parameters can be independently determined whereas the box parameters
can only be estimated. As it will soon appear, the determination of the parameters and in
particular of the island charging energy E? = ¢?/2C is indeed crucial to the quantitative

analysis of the data.

1.1 Description of the Single Electron Transistor

As explained in the introduction, the single electron transistor consists of two ultrasmall
tunnel junctions in series (see Fig. 1.1). The SET parameters are the tunnel resistances R
and Ry, the capacitances C'; and (5, and the gate capacitance Cy, usually much smaller than
the junction capacitances. The bare charging energy of the island is E? = e?/2Cy;, where
Cy, = C1 4+ Cy + C is the total island capacitance. The circuit is biased with a voltage source
V' and the central island is polarized by a gate voltage V. The dimensionless polarization
charge is n, = C,V,/e.

The charge configuration of the device has two degrees of freedom which are respectively
the number n of extra electrons on the island and the number p of electrons having passed
through the whole circuit. The number of electrons n; and ns having passed through the first

and the second junction are thus p +n and p — n, respectively.
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1.1

Figure 1.1. Schematics of a single electron transistor, and parameters of the system. The
jgunctions are characterized by their capacitances C; and their tunnel resistances Rp;. The

charge configuration of the system is specified by the number of electrons niy and ny having
crossed the junctions.
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CHAPTER 1 THE SET IN THE STRONG TUNNELING REGIME
1.1.1 Hamiltonian of the system

We use the set of states of the electrodes in the absence of tunneling as a basis for the
quantum states of a SET. A state of this basis is fully described by the charge variablesn and
p, and by the occupation numbers of the quasiparticle states in the electrodes. In this basis,

the electrostatic Hamiltonian H,; is diagonal and the electrostatic energy of a state is :
E(n,p) = (n —ny)*EY — peV. (1.1)
The quasiparticle states are the kinetic energy excitations of the electrodes. The quasipar-
ticle Hamiltonian H}, of the electrode i is :

H;p = ZElC;TUClU, (12)

l,o

T

- and ¢, are the creation and annihilation operators for quasiparticles

where the operators c
of spin ¢ in the eigenstate [ in the electrode 1.

Within the tunneling approximation, the tunnel effect occurring in each junction is treated
by adding a tunneling term H; = hy, +h;, to the Hamiltonian of the system. This Hamiltonian
H; couples states which differ by one electron having passed through one junction, and by one
quasiparticle in each electrode of the junction. The Hamiltonian h;, (or hy,) is a function both
of electrostatic degrees of freedom operators and quasiparticle operators:

ha = Y twSur (o) + e (1.3)

lr,o

where t;, is the matrix element, and where the translation operator S'\ZT increases the number

of electrons having passed through the junction:
Sir |y, o) = 4+ 1, ). (1.4)

The tunnel resistance of a junction is related to the tunneling Hamiltonian parameters by
the following relation:
_ Ry
B Am2pLpR <|tl,2'r|>av’
where p; and pj denote respectively the electronic density of states at Fermi level in

(1.5)

Ry

respectively left and right electrodes and (|¢2.|), is the average square modulus of the tunneling

matrix elements.
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The total Hamiltonian of the system H is then given by:

H=Hy+Y Hj,+hy+hy . (1.6)

1.1.2 The weak tunneling regime

In the weak tunneling regime R; > Rp, the tunneling Hamiltonian hy;; + his can be
treated at the lowest order in perturbation theory. The energy shift of the eigenstates of
the Hamiltonian (Hel +> . H ;p) are neglected and tunneling rates between charge states are
calculated using the Fermi Golden Rule and linear response theory [2]. Assuming that the
electrodes are in thermal equilibrium, the tunneling rate I'; at zero voltage through the tunnel
junction number i is given by the following convolution product:

1

62 RTZ’

I,(AE) = ( )/dEdE' f(E)|1— f(E +AE)|P(E -E) |, (1.7)

where f(E) is the Fermi density of states at energy £ and P(E — E') is the probability of
tunneling for an energy E — E' transferred to the electromagnetic environment modes. In
the limit case of a tunnel junction totally decoupled from the environment (i.e in the low

impedance limit), one can show that P(F) reduces to:
P(E-E)=6E-FE) . (1.8)

In such a case, only elastic tunneling processes are possible and the single electron rate I';

is given by:

1 AFE
Ti(AR) = (eQRT)

The stochastic evolution of the charge configuration of a single electron device is governed by

vl (1.9)

1 — e *T

these transition rates.

1.1.3 The sequential model

The sequential tunneling model (SM) of the SET is based on the resolution of the Markov
equations for the number n of extra electrons in the SET island using the transition rates on
both junctions calculated from the above expression. The current results from the difference
between the upward and downward rates. This method of calculation of the charge transport

within the SET actually corresponds to a semi-classical treatment of the Hamiltonian. Indeed,
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CHAPTER 1 THE SET IN THE STRONG TUNNELING REGIME

the tunnel effect has no incidence on the level positions, which only depends on the electrostatic
energies.

Although these equations are easily solved, there is no closed formulation for the current
or for the conductance. In particular, the zero-voltage conductance of a SET is given by the
following expression:

G X BAES BAE,
G=—= > P(n) [1 +

2 — e BAE] | _ oBAE; ’

(1.10)

where = 1/kgT is the inverse temperature, Go = 1/ (Ry1 + Rp2) is the series tunnel con-

ductance of the two junctions,
AEF=E(n+1)— E(n) = (+£2(n—n,) - )E° | (1.11)

is the electrostatic energy change when n changes by + 1 and

P(n) = —— | (1.12)

Z e*BE(m)

m=—oo
is the Boltzmann probability to have n excess electrons on the island. This zero-voltage
conductance turns out to be a interesting quantity both experimentally and theoretically:

e Experimentally, it can be measured easily and accurately by a lock-in technique. More-

over, being measured at zero bias voltage, it is not affected by Joule heating effects.

e Theoretically, it is in principle most easily calculated since it is mere equilibrium prop-
erty of the system. As an example, a derivation of Eq. (1.10), based on the fluctuation-
dissipation theorem, is given in Appendix 1-A.

As pointed out by Pekola et al. [4], the measurement of the conductance in this weak
tunneling regime provides a way to obtain to measure (in an absolute way) the temperature

of the system.

1.2 The SET in the strong tunneling regime

We have investigated the effect of strong tunneling in the SET. Our work is reported in the
manuscript “Strong tunneling in the single electron transistor” by P. Joyez, V. Bouchiat, D.
Esteve, C. Urbina and M.H. Devoret, which is reproduced below. This manuscript has been

accepted for publication in Physical Review Letters.
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Strong Tunneling in the Single Electron Transistor

P. Joyez, V. Bouchiat, D. Esteve, C. Urbina and M. H. Devoret
Service de Physique de I’Etat Condensé,
CFEA-Saclay
91191 Gif-sur-Yvette, France

(May 26, 1997)

Abstract

We have investigated the suppression of single electron charging effects in
metallic single electron transistors when the conductance of the tunnel junc-
tions becomes larger than the conductance quantum e?/h . We find that the
Coulomb blockade of the conductance is progressively shifted at lower tem-
peratures. The experimental results agree quantitatively with the available
1/T expansion at high temperature, and qualitatively with the predictions of
an effective two-state model at low temperature, which predicts at 7' = 0 a

blockade of conductance for all gate voltages.

PACS numbers: 73.23.Hk, 73.20.Jc, 85.30.Wx, 73.40.Gk
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Figure 1. Schematics of a SET and predictions of the sequential tunneling model for its
conductance in the case when Z(w) = 0. Top panel: conductance of the SET as a function of
the gate charge n, = C,V, /e, for various temperatures. From top to bottom kgT/E® =5, 2,
1, 0.5, 0.2, 0.1, 0.05, 0.02 and 0.01. Bottom panel: temperature dependence of the maximum
(ng =1/2 mod 1 ) and minimum ( n, =0 mod 1 ) conductance. At high temperature, the
conductance depends on temperature but not on ng. The value G = Gq is reached only in
the limit T — oo. Below a certain temperature roughly given by kpT =~ E°, gate-charge
modulation sets in and the well-known conductance peaks appear at ng = 1/2 mod 1, for which
two adjacent island charge states have the same electrostatic energy. As temperature is reduced
further, the conductance peaks sharpen. The maxima remain fixed at Go = 2 and the width of
the conductance peaks becomes proportional to T.
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Single electron devices consist of small “island” electrodes whose charge is nearly perfectly
quantized in units of e, but which can exchange electrons through tunnel junctions. These
two seemingly contradictory requirements can be met if the tunnel conductances of the
tunnel junctions are much lower than the conductance quantum G = e€?/h. In the recent
years, different single electron devices such as single electron transistors [1], turnstiles [2]
and pumps [3,4], have been successfully operated and their behavior is now well understood
[5]. However, little is known on single electron effects when the tunnel conductances are
comparable or greater than G. In this strong tunneling regime, one expects that quantum
fluctuations of the island charges will eventually suppress single electron effects. Indeed, such
a suppression of Coulomb blockade with increasing tunneling strength has been observed
in the particular case of tunnel junctions with only a few, well-transmitted channels [6, 7].
In this Letter, we investigate the effect of strong tunneling in the case of metallic tunnel
junctions with a large number of low-transparency channels.

For this purpose, we have measured the zero-voltage conductance of metallic single elec-
tron transistors (SET) with moderate to large conductances. A SET consists of two series-
connected tunnel junctions defining one island (see inset of Fig. 1) and of a gate electrode
which electrostatically controls the current through the device. We first recall the predicted
conductance within the sequential tunneling model (SM), on which our data analysis will
be based. This model, relevant for weak tunneling, assumes that the number n of electrons
in the island is a good quantum number. It only considers tunnel transitionsn — n +1
at the lowest order in perturbation theory, level shifts being neglected [5,8]. The SM pre-
dictions for the conductance G of the SET can be expressed using a single function g of
reduced parameters: G = Gy g (ny, E?/kpT), where Gy = 1/ (G}% + G;%) is the series tun-
nel conductance of the two junctions, n, = C,V,/e is the dimensionless gate charge, T is
the temperature and E? = ¢2/2Cy is the bare charging energy of one excess electron on
the island, Cx = C; + Cy + € being the total geometric capacitance of the island. The
predictions of the model are summarized in Fig. 1, in the case of a zero-impedance electro-

magnetic environment for the SET. Finite impedance effects can be evaluated within the
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Figure 2. Predictions of the two-state model of Ref. 10 for the reduced conductance at low tem-
peratures. Top panels: gate-charge modulation for kT /E*= 0.3, 0.1, 0.03 and 0.01 from top
to bottom, respectively. Bottom panel: temperature dependence of the maximum and minimum
conductance. This model, which uses renormalized parameters E, G anda*, predicts a broad-
ening of the conductance peaks and a reduction of the peak value when the tunnel conductance
is increased, in qualitative agreement with the experiments (see Fig. 3).
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SM [9]. In our samples, they yield less than 1% conductance corrections which were taken
into account in the data analysis.

We now present the theoretical predictions for strong tunneling in the SET. We define the
tunneling strength parameter as @ = G,,/Gg, where G, = Gp1+Grs is the parallel tunnel
conductance of the two junctions. In the low temperature regime, the conductance of the
SET has been calculated for arbitrary a [10] by mapping the system on an effective two-state
model. This calculation, which only retains the lowest two electrostatic energy states of the
island, is only valid near the conductance peaks and at temperatures for which the occupation
of other charge states can be neglected. In the strong tunneling regime, this model predicts
that the finite energy width of the island charge states prevents the conductance peaks to
sharpen at low temperature, as shown in Fig. 2. Correlatively, the maximum conductance
decays as 1/InT at low temperature. This suppression of conductance for all values of
gate voltage is a new feature which is not predicted by weak tunneling theories. However,
these predictions cannot be tested quantitatively because the model uses cutoff-dependent
renormalized parameters EX, Gf anda* [11,12] whose relation to the bare parameters is
unknown in the strong tunneling regime.

At high temperatures ( kgT >> E? ), the conductance is given by the expansion [13,14]:

Gﬁo - %EC/k:BT +0 [(Ec/kBTf] (1)
where
- 9C(E) B
EC_E‘?{l_WakB—T} (2)

¢ being the Riemann Zeta function. Expansion (1) coincides with the one found within
the SM, but with Ec in place of the bare charging energy E°. Hence, Eq appears as
a temperature-dependent effective charging energy which contains all the effects of strong
tunneling in the high temperature limit. The model developed in Ref. 14, valid for arbitrary
a, also covers the intermediate temperature range. This model is however not quantitative
because it reproduces only part of the SM predictions and it incorporates an unknown cut-off

parameter.
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Figure 3. Reduced measured conductance of samples 1 and 3. Top panels: variations with
gate charge at various temperatures. The temperatures of the curves are, from top to bottom
2 1055, 969, 796, 630, 535, 406, 303, 199, 104, 50.6, 30.5 and 10.2 mK (top left panel ) and
763, 452, 335, 231, 180, 119, 70.5, 46.5, 22.8 and 17.3 mK (top right panel ). The dashed line
is a fit using the SM with an effective charging energy (see Fig. 4). Bottom panel: temperature
dependence of the maximum and minimum conductance.
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The samples were prepared using standard e-beam lithography and 3-angle evaporation
[15] through a shadow mask [16]. The SETs were embedded in a low-pass RC electromag-
netic environment necessary to the determination of E? in the superconducting state. The
resistances consisted of 1 um-long resistive leads made of either Cu or AuCu alloy, and were
connected to on-chip 100 pF planar capacitors with one plate connected to ground. The
samples were placed inside a copper shield anchored to the mixing chamber of a dilution
refrigerator. Most measurements were taken in the normal state of the Al electrodes, in a
0.5 T magnetic field. The electrical wiring between the sample and the measuring apparatus
at room temperature was made through filtering coaxial lines, shielded twisted pairs and
discrete miniature cryogenic filters [17]. We measured the zero-voltage conductance using a
low-frequency ( ~ 10 Hz ) lock-in technique, at an excitation level adjusted to probe only
the linear part of the current voltage characteristic. We have investigated 4 samples, labelled
1 to 4, with increasing conductances Gy = 5.82 S, 6.06 pS, 24.9 pS and 71 pS. Assuming
G,/ = 4G\, since the two junctions of each sample are nominally identical, the values of a
are 0.60, 0.62, 2.5 and 7.3, respectively. The junction size (typically 10* nm? ) results in a
number of channels of the order of 10° and in a bare charging energy E° between 1.0 and
1.5 kg K. For each sample, we measured the conductance as a function of the gate voltage
V, at various temperatures. Experimental data for samples 1 and 3 are shown in Fig. 3. For
sample 1 ( « =0.6), the data closely resemble the weak tunneling predictions of the SM (see
Fig. 1), as expected. In particular, the width of the peaks at low temperature scales with
temperature down to 10 mK, the lowest temperature we have reached. This good electron
thermalization proves the efficiency of the filtering. Deviations from the SM predictions
show up in the reduction of the peak height at low temperature. We interpret this effect
as a finite tunneling strength correction (the environmental resistance of the AuCu leads of
this sample, of the order of 200 2, results in a similar but much smaller effect). For sample
3 ( @ =2.5), the deviations from the SM are more pronounced: the conductance peaks are
wider and the maximum conductance is more reduced at low temperature. Note that such

deviations cannot be predicted by treating quantum fluctuations as an excess temperature
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Figure 4. For each sample, effective charging energies F (solid squares) and Ey (open circles)
obtained from the average conductance and from the aspect ratio of the modulation, respectively
(see text), and predictions of Eq. (2) (straight lines), as a function of 1/T. The points indicated
by an arrow in sample 3 correspond to the dashed curve in the top right panel of Fig. 3. Values
indicated by an arrow and italic text on the left axis are the bare charging energies EY obtained
from resonances in the superconducting state (see text and inset of Fig. 5). The predictions
of Eq. (2), are calculated using the above determined E° for sample 1, 2 and 4, and an
extrapolation for sample 3 for which the resonances could not be measured.
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within the SM. The experimental results are in qualitative agreement with the predictions
of the two-state model of Ref. 10, for suitably chosen E*, G§ and o (compare Figs. 2 and
3). Note also that the parameter a* we have used is different from the bare a, as expected
[11].

In the high temperature regime, we have analysed our data using the SM but with an
effective charging energy as suggested by Eqgs. (1-2). In the temperature range where there is
no conductance modulation with the gate voltage, we define an effective charging energy Ecq
through the equation Gexp,/Go = ¢ (E01 /kgT ), where Gy, is the measured conductance. In
this regime, Eq is the only parameter needed to describe the data. This procedure can be
generalized to the temperature range where the SET modulates, by using the n, -averaged
conductance, but fitting of the modulation is not guaranteed then. In this latter range, one
can use a similar procedure to extract another effective energy E¢s from the aspect ratio
(Gmax — Gmin) / (Ginax + Gmin) using the SM. If Egy and Egp coincide in the temperature
regime where the conductance modulation is sinusoidal, the data can be well fitted using
the SM with this effective charging energy. In Fig. 4, we show the values of E¢c; and Eeo
obtained following the above procedures. One finds that E¢q and Ego indeed coincide in
the temperature range where the modulation is sinusoidal, supporting the effective charging
energy idea. The temperature dependence of the effective energies is more pronounced for
increasing . The reduction from the T' — oo extrapolation, already noticeable for o =0.6,
reaches 70% for o =7.3. This reduction can be interpreted as an increase of the effective
junction capacitance, which is expected to be infinite in the limit of infinite tunnel conduc-
tance. According to Eq. (2), the T' — oo extrapolation determines the bare charging energy
E?. In order to check this prediction, we have carried out an independent determination of
the charging energy E°. For this purpose, we took advantage of the subgap resonances in
the I-V characteristic of the SET in the superconducting state. Clear observation of these
resonances, due to the so-called resonant Cooper pair tunneling process [18, 19], necessitates
an electromagnetic environment with a smooth frequency response and sufficient dissipation,

as provided by our on-chip RC circuit. These resonances are gate-voltage dependent and
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vertical offset proportional to ny. The checkered pattern yields a determination of the charging

enerqy.
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form a checkered pattern in a pseudo-3D I-V-V plot, as shown in the inset of Fig. 5. From
the bias voltages at which resonance crossings occur, one obtains a charging energy ES. This
charging energy differs from E? due to virtual electron-hole excitations. Perturbation theory
at the lowest order for n, = 0, yields E = E2 {1 — aT' (E?/A)} where A =180 peV is the
gap of Aland I' (z) = £ ["™° u?K?| (u) e"*"du, K_; being a Bessel function [20]. Using this
result, one finds that E° is 2% to 50% larger than ES for our samples. The values of EY
obtained this way are indicated by arrows on the left axes in Fig. 4. Using these values,
we have plotted the predictions of Eq. (2) in Fig. 4. These predictions, with no adjustable
parameter, are in quantitative agreement with the experimental data in the temperature
range for which the first order expansion in « is sufficient.

The following scenario for the suppression of Coulomb blockade with increasing tunneling
strength now emerges from the temperature dependence of the maximum and minimum
conductances as a function of the reduced temperature kg7 /E? shown in Fig. 5, for samples
1, 3 and 4. At high temperatures, strong tunneling tends to suppress the reduction of
the relative conductance due to Coulomb blockade, and to restore the bare conductance.
The observed reduction of the effective charging energy with respect to the bare charging
energy shifts the modulation regime below a temperature which decreases strongly as «
increases. In the modulation regime, the conductance peaks are wide and their maximum
continuously decays when the temperature decreases. Quantum fluctuations thus reduce
not only the effective charging energy but also the modulation of the relative conductance
with gate voltage. These effects, which impose a quantum limit to the performances of the
SET, should be considered in electrometry applications. In conclusion, Coulomb blockade
is washed out at large conductances, except at extremely low temperatures.

The authors are indebted to H. Grabert and H. Schoeller for useful discussions. This
work was supported in part by the Bureau National de la Métrologie and EU ESPRIT
project SETTRON.

67




REFERENCES

[1] T. A. Fulton and G. J. Dolan, Phys. Rev. Lett. 59, 109 (1987).

[2] L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve,
C. Urbina and M. H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).

[3] H. Pothier, P. Lafarge, D. Esteve, C. Urbina and M. H. Devoret, Europhys. Lett. 17, 249
(1992).

[4] J. M. Martinis, M. Nahum and H. D. Jensen, Phys. Rev. Lett. 72, 904 (1994); M. W.
Keller, J. M. Martinis, N. M. Zimmerman, A. Steinbach, Appl. Phys. Lett. 69, 1804 (1996).

[5] Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (Plenum, New York,
1992).

[6] C. Pasquier, U. Meirav, F. I. B. Williams, D. C. Glattli, Y. Jin and B. Etienne, Phys.
Rev. Lett. 70, 69 (1993), C. Livermore, C. H. Crouch, R. M. Westerweld, K. L. Campman
and A. C. Gossard, Science, 274, 1332 (1996) and references therein

[7] L. W. Molenkamp, K. Flensberg and M. Kemerink, Phys. Rev. Lett. 75, 4282 (1995).

[8] I. O. Kulik and R. I. Shekter, Zh. Eksp. Teor. Fiz. 68, 623 (1975) [Sov. Phys. JETP 41,
308 (1975)].

[9] P. Joyez and D. Esteve, submitted to Phys. Rev. B.

[10] J. Konig, H. Schoeller, and G. Schén, Europhys. Lett. 31, 31 (1995); H. Schoeller, and
G. Schén, Phys. Rev. B 50, 18436 (1994).

[11] H. Grabert, H. Schoeller, private communications.

[12] Renormalization of charging energy has also been considered in Ref. 7 and in X. Wang,

R. Egger and H. Grabert, submitted to Europhys. Lett., 1996.

[13] X. Wang, G. Géppert and H. Grabert, preprint, 1996.

68




[14] D. S. Golubev, and A. D. Zaikin, JETP Lett. 63, 1007 (1996).

[15] D. B. Haviland, L. S. Kuzmin, P. Delsing, K. K. Likharev, and T. Claeson, Z. Phys. B
85, 339 (1991).

[16] G. J. Dolan and J. H. Dunsmuir, Physica B 152, 7 (1988).

[17] D. Vion, P. F. Orfila, P. Joyez, D. Esteve and M. H. Devoret, J. Appl. Phys. 77 (6),
2519 (1995).

[18] D. B. Haviland, Y. Harada, P. Delsing, C. D. Chen, and T. Claeson, Phys. Rev. Lett.
73, 1541 (1994).

[19] A. Maassen van den Brink, L. J. Geerligs, and G. Schon, Phys. Rev. Lett. 67, 3030
(1991).

[20] Appendix 2-B in this thesis.

69




CHAPTER 1 THE SET IN THE STRONG TUNNELING REGIME

1.3 Comparison with a cotunneling theory

In a very recent paper [5], Konig, Schoeller and Schén were able to calculate the conduc-
tance of the SET without adjusting parameters by taking into account second order terms in
the tunneling Hamiltonian. Their calculation has been compared with the experimental con-
ductances G i, and Gpg, of the various SETS as a function of the temperature (see Fig. 1.2).
One can notice that the agreement is good both for the temperature of appearance of modu-
lation as for the InT" decay law of G4, at low temperatures. However their calculation does
not hold for SETs with highly transparent junctions (Rr < Rk ) for which a more complete

calculation taking in account the tunneling Hamiltonian at all order is still needed.
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Figure 1.2. Reduced conductance as a function of the reduced temperature: sample 1 (top) and
sample 3 (bottom). Comparison of the experimental results (dots) with the plot obtained from
the calculation of Kénig et al. (see Ref. [5]).
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1.4 Analogy with the Kondo effect

As briefly mentioned above, an interesting analogy [6] is provided by comparing this problem
with the Kondo problem.
The Kondo problem.

In its simplest form, the Kondo problem is concerned with a single magnetic impurity of
spin % which interacts via an exchange scattering potential with a band of free electrons. Such
a description was first proposed by J. Kondo in 1964 [7] to interpret the minimum of resistivity-
temperature curves in magnetic alloys. Kondo showed that the anomalous resistivity increase
at low temperatures is a consequence of the enhanced scattering probability of the conduction
electrons around diluted magnetic impurities. Consequently, the paramagnetism is screened
by the interacting electrons which tends to “dress” such impurities.

Qualitative arguments

In our system, the virtual electron-hole pairs created on both sides of the tunnel junctions
(an “elementary excitation” for the considered system) play the role of the conduction electrons
in the Kondo problem; while the two neighboring charge states of the transistor island can be
interpreted! as the “up” and “down” states of a spin %

This analogy with the Kondo effect is helpful to picture what physically happens in the
single electron transistor at low temperatures (see Fig. 1.3). Like in the Kondo effect, virtual

electron-hole pairs dress the tunnel junctions and eventually lead to a screening of the island

charge.
virtual
électron-hole
pairs " " . 2
\ transparent" junctions g¢>e*h
"Po
*lte o]
| ofl, Island e4» -
oMo
*17° Q=-ne *Tto

G,y ===G,,C,
© T

Figure 1.3. Schematics of a SET with virtuals electron-hole excitations dressing the junctions.

1 Such a spin analogy to model neighboring charge states in single electron devices is further developed in section 2.1.2
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CHAPTER 1 THE SET IN THE STRONG TUNNELING REGIME

Analogy in the Hamiltonian structure.
One can notice also that there exist a more formal analogy in the Hamiltonian structure
of our system and the Kondo problem. Indeed, the Kondo model is described by a Kondo or

s — d Hamiltonian of following form:

]{3,0’ k,U

HZZE(?) e —i—J?.?(O), (1.13)
o

—
where the operators ¢, create conduction electrons of wave vector k and spin index

o
o = £1. The impurity spin is ?, whereas s (0) denotes the effective spin resulting from
the cumulative effect of the conduction electrons at the impurity site 7 = 0. The exchange
constant .J is positive for an antiferromagnetic interaction, which is the usual situation in a
real metal.

One can identify this last expression with the Hamiltonian for our system (Eq. 1.6). More
precisely, the first and second terms of the Kondo Hamiltonian corresponds respectively to the
quasiparticle Hamiltonians H ép and the Hamiltonian H,; + H; described in section 1.1.1. The
fact that this last term can be interpreted as an Hamiltonian describing a spin interacting with

H
an effective field which can be written as: J S .75 (0), is further explained for an equivalent

case in next chapter (section 2.1.2, Eq. 2.11).

1.5 SET optimization

Apart from their importance for the understanding of single electron charging effects, the
above results have a direct implication on the optimization of SETSs for electrometry applica-
tions. We show here that the disappearance of the Coulomb blockade in large conductance
electrometers imposes a fundamental limit to the sensitivity of SET based electrometers.

The current noise in a SET is due to the discreteness of the charge transfer by the random
tunneling events (see Chapter 5 for details). The current noise spectral density of the SET is

given by the shot noise formula:
6I ~ el A/VHz. (1.14)

The noise figure of a SET electrometer is defined as the input charge noise 6q which would

produce the same current noise. Assuming that the device is operated in the well developed
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Coulomb blockade regime at the optimal current I ~ aF e /h, one readily obtains the following

result:

h

AP e/VHz. (1.15)

oq ~

This expression shows that the SET sensitivity first improves on increasing «, reaches an
optimum, and degrades afterwards when the effective charging energy decreases significantly.
The operating temperature must however satisfy the inequality kT < E. () for the SET
to be in the Coulomb blockade regime. In practice, for given values of the bare charging
energy and of the operating temperature, the optimal value of « is determined by minimizing
the above expression while satisfying the inequality kgT < E, (). Although we have not
determined the best noise figure that can be achieved with a SET electrometer, our results
indicate that the optimal value of « is much larger than unity : electrometers in the strong
tunneling regime are more sensitive than electrometers in the weak tunneling regime because

the increase in the current overcompensates the reduction of the Coulomb blockade.

Conclusion

Our experimental results confirm the intuitive knowledge that Coulomb blockade is sup-
pressed when tunneling becomes too strong. They furthermore bring out a clear scenario for
the transition from weak to strong tunneling. We have also shown that these results can be
used to optimize the performance of single electron devices by operating them in the strong
tunneling regime. Finally, our results provide a benchmark for testing future theoretical pre-

dictions on strong tunneling.
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Appendix 1-A

Fluctuation-dissipation derivation of the SET
zero-voltage conductance within the sequential
tunneling model

In the standard approach, Eq. 1.10 of the SET zero-voltage conductance in the weak tun-
neling regime is derived using the linear response theory, for small bias voltage V' [1]. In this
section, we propose another derivation of Eq. 1.10, making use of the fluctuation-dissipation
theorem applied to the system at equilibrium (V = 0, see Fig. 1.4). For this purpose, we first
need to identify the proper Brownian variable describing the charge transport in the system.
Let us first note that since the island cannot charge excessively, the time average values of n,
and ny tend to be equal. Thus, in principle, the charge ¢; transferred through the SET can

be defined as any linear combination:
¢ =e(Ang + Aang) (1.16)

where A\ + Ay = 1. However, if one wants ¢; to be a Brownian variable it must fulfill the con-
dition that successive events be uncorrelated, whatever the state of the system. In particular,
suppose that the island is put in a high charge state, it will then tend to relax toward the
ground state, expelling electrons one at a time through either junction. However, since the
tunneling rate (1.9) through junction ¢ is proportional to its tunnel conductance Gp; = R}il ,
electrons have a higher probability to cross the most transparent junction. In order for the
variations Ag; corresponding to each electron tunneling event to remain uncorrelated, one
must weight n; and n, in order to compensate for the imbalance of the tunneling rates by
choosing:

GQ Gl

M=—2 . Ny =t
TG, T PTG Gy

(1.17)

With this choice, ¢; is a proper Brownian variable. We now evaluate the diffusion constant D

_ (Aqt)2
2D_-<—Z?—> , (1.18)
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where <%> is evaluated by summing the different transitions weighed by their respective

probabilities:

(A%)2 242 (Anl)2 2 (A”2)2
() - o (o) e ()

= ¢ Y P(n) [\ (T1(n,+) +T1(n, =) + A3 (Ta(n, +) + Ta(n, —))](1.19)

n=—oo

Here P(n) is the Boltzmann probability to have the island in state n, given by Eq. (1.12) and
['; (n, %) is the rate for the transition n — n £+ 1 through junction . Inserting expressions
(1.17) and (1.9) for A; and I'; (n, &), one obtains after elementary algebra:

+o0 4 _
_ 1 GTlGTQ Z P(n) [ AE’n AETL

D=
2Gm +Gr2 = 1 — e—BAEL | _ o—BAE;

(1.20)

Finally, using Einstein’s relation which relates the dissipative conductance G to the fluctuation

parameter D :
kTG = D. (1.21)

We then recover Eq. 1.10 for the SET conductance:

Gy & BAE* BAE:

where Go = 1/ (R11 + Rrs) is the series tunnel conductance of the two junctions and AE =

E(n+1) — E(n) is the electrostatic energy change when n changes by + 1.
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n,=1/2 (mod 1)

N/

-1 0 1 2

Figure 1.4. States of the SET at V = 0 , corresponding to a minimum of conductance
(ng, = Omod1), and mazimum conductance (n, = 0.5mod1). The states are degenerate
with respect to the number of electrons transferred through the device, and their energy only
depends on n and ny. At thermal equilibrium, stochastic transitions between the states obey
detailed balance, and the different n states are populated according to Boltzmann’s law. The
random charge transfer in and out of the island through either junction causes a Brownian
motion of the charge transferred through the SET. The conductance of the system is related to
this diffusive behavior by the fluctuation-dissipation theorem.
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Appendix 1-B
Renormalization group approach to the low tem-
perature conductance of the SET

In Ref. [3], Schoeller and Schon derive non-perturbative expressions for the charge of the
single electron box and for the conductance of the SET for an arbitrary tunneling strength.
In this section we simply recall their results for the SET conductance which were used in the
paper but could not be reproduced for lack of space. Their approach is based on the renor-
malization group technique, a powerful method which proved its efficiency in many problems.
However, the method introduces an artificial cut-off energy which has the drawback of mod-
ifying the parameters of the system [8]. The link between the modified parameters and the
measurable “bare” parameters must be determined by another method (e.g. high order per-
turbation theory). This has not yet been done for the present problem. In order to keep this
essential point in mind, we will introduce below a “star” in the notation of these modified
SET parameters. In their model, Schoeller and Schon only retain the two lowest charge states
of the system, to simplify the calculations. Thus, their model can only capture correctly the
behavior of the system when the other charge states play a negligible role. This is the case at
temperatures kgT < E° and in the vicinity of the conductance peaks.

Here, we consider only the peak at ny ~ 0.5. The bare parameters of the model are :

e the energy gap between the two neighboring charge states :

1
E, = E}|n, — 5' (1.23)
e the tunneling strength parameter
a = RKG// (1.24)
where G, = (Ry, + R;,) is the parallel conductance of both tunnel resistances, and
e the series tunnel conductance of the SET
Gy = ! (1.25)
0 (Rp1 + Rp2)’ .

The renormalization process leads to the introduction of renormalized quantities which are
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expressed using the following modified parameters:

B = — (1.26)
. o

The conductance is then expressed in terms of the renormalized quantities :

hw

Gr [t Few A ahw coth .
G = 87r02 /_oo hdkaT csch (kBT) (hw B E;)Q N (ﬁﬁgi’;;})( — ))2 (1.28)

2kpT

The renormalization group method can be extended to include more charge states. It
would then allow to cover all gate charges, and higher temperatures. However, this would
not solve the main problem of this theory which is its lack of quantitative predictive power.
Solving this problem amounts to finding the relationship between the modified parameters
and the measurable quantities. As already mentioned, this can be done by calculating the
perturbation theory at high orders and comparing the predictions of the two methods. In the
strong tunneling single electron box, this comparison requires to evaluate at least the third
order of the perturbation theory in a path integral representation, which involves summing

the contributions of 136 diagrams [9].
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Appendix 1-C

Determination of the charging energy from
the subgap resonances of the superconducting
transistor

In the absence of an applied magnetic field, the Al electrodes of the SET are in their super-
conducting state, and charge transport at bias voltages 0 < V' < 2A/e, is mostly due to the
Josephson tunneling of Cooper pairs. Josephson tunneling is however an essentially reversible
process, and thus, no DC current can flow in the device unless some non-electronic degrees
of freedom of the system can absorb the energy provided by the voltage source. This is why
fully superconducting devices generally present a gap in their I-V characteristic. The current
below the gap is however usually not strictly zero, because the electromagnetic environment
of the device may always absorb some energy. In the case of the transistor, the energy pro-
vided by the voltage source can also promote the SET island to a higher charge state. Such
an excitation of the island is unstable and decays, exciting the environment and returning the
SET to its initial condition (see Fig. 1.5). This type of process is possible, when the voltage
source fulfills a resonance condition with the discrete set of gate-voltage dependent levels in
the island. Hence, one expects to see gate-voltage dependent resonances in the subgap -V
characteristics of superconducting SET transistors. This phenomenon, known as “resonant
Cooper pair tunneling” was investigated in detail in Refs. [10-14] . When the Josephson cou-
pling energy E; is such that F/; < E., the authors have shown that the resonance conditions

can be expressed as :
(2p+1)eV =4E, |¢* — q(ngmod 2)| (1.29)

where p and g are integer numbers, V' is the bias voltage, E, is the charging energy, and n, is
the reduced gate charge. These resonances draw lines which form a checkered pattern in a 3-D
1-V-V g plot. This simple geometry enables a straightforward determination of the charging

energy, using the above resonance condition.
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Figure 1.5. States of the superconducting SET at finite voltages, for E; < E.. Adjacent states
a,b,c,...are coupled by Josephson coupling represented by the solid arrows. States a,c,e, ...
correspond to local minima of the electrostatic energy and are thus metastable. Their decay is
usually slow, unless a resonant charge transfer can occur, as depicted here: states a,c,e,...
are resonantly coupled to the states d, f,... by a high order Josephson coupling represented by
dashed arrows (this resonance corresponds to p =1 and ¢ = 1 in Eq. (1.29)). Under such a
resonance condition, starting from e.g. state a, the system coherently accesses to the unstable
state d, and subsequently decays toward either state ¢ or e, much faster than from the initial
state a. The whole process (resonant transfer followed by an inelastic decay) then starts over
again. These resonances, similar to a radiative cascade in atomic physics, manifest themselves
by an increase in the current flowing through the SET (see Ref. [12] of Chapter 2).
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Chapter 2

Quantum fluctuations of charge in the
single Cooper pair box

Introduction

The question of the behavior of single electron devices when the electrodes are supercon-
ducting arose at the very beginning of single electronics because the aluminum commonly used
to fabricate most of the metallic-based single electron devices is superconducting at the typ-
ical sub-Kelvin operating temperatures (unless a sufficiently large magnetic field is applied).
Such a situation is really different from the case of normal metal electrodes and the question
arises whether the pairing of electrons in Cooper pairs interplays with charging effects. Do
“single Cooper pair devices” exist 7 At first, one naturally wonders if the charge of a small
metallic superconducting electrode in a small tunnel junction circuit is still quantized, and if
it is, with which charge quantum. A clear answer to this fundamental question was given by
Lafarge et al. when they directly measured the charge of a superconducting island coupled
to a non-superconducting metal reservoir of charges [1]. They found that the charge of a su-
perconducting island is quantized in multiples of 2e at low temperature, provided that the
charging energy of the island is kept smaller than the energy gap for the creation of a qua-

siparticle in the superconductor. The charge 2e is thus a charge quantum for single Cooper



(s s

Figure 2.1 Schematic diagram of the single Cooper pair box. The state of the circuit is
characterized by its number n of excess Cooper pairs that have entered the

superconducting island (dashed frame) through the Josephson junction of capacitance

Cj. The island can be electrostatically polarized by the woltage source U through the

capacitance C’g .
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Figure 2.2 Top: Electrostatic energy of the box for given numbers n of Cooper pairs in
excess in the island as a function of the reduced voltage CqU/2e. Energy curves
associated to charge states with one extra quasiparticle in the island are shifted by the

even-odd free energy A
Bottom: number of excess Cooper pairs in the island minimizing the electrostatic
energy for A>E. .It corresponds to an integer number of Cooper pairs in the island.

_84 -



2.1

pair electronics, although it is not as robust as e for single electronics.

When the charge of a superconducting electrode corresponds to a given number of extra
Cooper pairs, its superconducting phase is completely undetermined. The number of extra
Cooper pairs in the island and the superconducting phase difference across the junction are in
fact conjugated variables, which obey a Heisenberg uncertainty relation (note that the BCS
theory makes use of the phase only, for the sake of calculation convenience).

Assuming that 2e is indeed the charge quantum in the superconducting state, one can then
wonder how the coupling of a superconducting island to other superconducting electrodes
through tunnel junctions affects the charge quantization in the island. What is for single
Cooper pair devices the analog of the condition Ry > Ry for single electron devices?

The tunnel junction permits the passage of Cooper pairs between the superconducting
electrodes and tends to maintain the same superconducting phase on both sides of the junction,
thus favoring quantum fluctuations of the conjugate variable, i.e. the number of Cooper pair
transferred through the junction. As with single electrons, these quantum fluctuations of the
island charge are in competition with charging effects which tend on the contrary to select
the number of pairs in the island. However, there is an important difference: the tunneling
of Cooper pairs is characterized by a coupling energy, called the Josephson energy E;, which
is a new energy scale which has to be compared directly to the charging energy and not by
a resistance which has to be compared to the resistance quantum. The tunneling of Cooper
pairs is a reversible process whereas the tunneling of single electrons is irreversible.

We report in this chapter an experiment on a single superconducting island coupled to a
superconducting reservoir through a Josephson tunnel junction. This “fully-superconducting
box” experiment is for single Cooper pair electronics the equivalent of the single electron box

experiment for single electronics (see Introduction).

2.1 The superconducting box in the 2¢ quantization
regime

The superconducting box circuit was first theoretically considered by Biittiker [2] It con-
sists of a small superconducting electrode, nicknamed “island”, connected to a superconducting

lead, which acts as a “reservoir” of charges, through an ultrasmall Josephson junction (see
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Fig. 2.1). The island is also capacitively coupled to a voltage source U through a gate ca-
pacitance Cj, thus providing a tunable electrostatic polarization. The principle of the box
experiment consists in measuring the average charge of the island while sweeping the voltage

U.

2.1.1 The Coulomb staircase in the absence of Josephson coupling

2.1.1.a Quantum description of the island states!

We assume here that the quasiparticle gap A is large enough so that no quasiparticles are
present in the electrodes at the temperature of the circuit. Under these conditions, the island
charge ¢ is quantized in units of 2e, and the set of states |n) with n excess Cooper pairs in the
island is a basis of the Hilbert space of the box. These states are eigenvectors of the operator
n:

nin) =nln) . (2.1)

We will use in the following the basis of states |n) to express the Hamiltonian of the box.

As further developed in chapter 4, section 4.1.2, the phase ¢ across the Jospehson junction,

defined by the eigenvalues of the operator 5= %a% is a conjugate variable of the Cooper pair

number n.

2.1.1.b The electrostatic Hamiltonian
The total capacitance of the island Cy, = C; +C,; determines the characteristic electrostatic
charging energy F.:

62

E.=— 2.2
T (2.2)

The electrostatic Hamiltonian H,, is diagonal in the basis |n) and writes [3]:
Hy =4E.» (n—mn.)*|n) (n| . (2.3)

where n, = C,U/(2e¢) is a dimensionless variable which corresponds to the effective number of
excess Cooper pairs induced on the gate capacitance. In contrast with n, which can take only
integer values, the reduced voltage n.. is a continuous parameter. As the gate voltage U varies,
the electrostatic energies of the states |n) form a set of parabolas indexed by the number n of

excess Cooper pairs. These parabolas are centered around voltages U,, = n (2¢/C,) and cross

1 A more detailed introduction to Hamiltonian mechanics applied to electrical circuits is provided in chapter 4.
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at regularly spaced voltages U, . = (2n + 1) e¢/C, (see Fig. 2.2, top panel). The electrostatic
energy at crossing points between neighboring states is equal to the charging energy E.. The
pair quantization holds if, at these degeneracy voltages, the free energy A of the states with
one extra quasiparticle is large enough so that they are not thermally populated. Such a

condition can be writen as:
kT < A—E, . (2.4)

In an ideal sample and in the zero temperature and zero magnetic field limit, the energy A
equals the BCS gap A. The energy A is reduced below A first the entropic contribution
(see section 2.3.3.c) and, in most practical cases, by defects in the superconducting island.
The Eq. 2.4 of course implies the relation A > FE.. In the opposite case, a quasiparticle
charge states can minimize the electrostatic energy around the voltages U, ., thus breaking

the 2e—quantization in the island.

2.1.1.c The Coulomb staircase at zero temperature

In the absence of Josephson coupling, the superconducting box is similar to the single box
in the weak tunneling regime but with a double charge quantum. At zero temperature, the
island adopts the number n of extra Cooper pairs which minimizes the electrostatic energy.
Therefore Cooper pairs enter the island one by one at the degeneracy voltages as the voltage
U is swept. The equilibrium value of n is quantized and follows a step-like function denoted
as a ”Coulomb staircase”® (see Figure 2.2, bottom panel), with a 2e-periodicity with respect
to the gate charge U/C,. Like in the single electron box, the steps are infinitely sharp at zero

temperature and are rounded by thermal fluctuations of the island charge at finite temperature.

2.1.2 The Coulomb staircase in presence of Josephson coupling

2.1.2.a. The Josephson Hamiltonian
The tunneling Hamiltonian between the electrodes of a tunnel junction with tunnel re-
sistance Ry results in the superconducting case in a Josephson Hamiltonian which couples

neighboring charge states (see section 4.1.2). The expression of the Josephson Hamiltonian in

2 The “Coulomb staircase” term is also used for the periodic structure observed in the I-V curves of single electron transistors.
Even if it manifests on different variables, such a staircase originates from the same physical reasons.
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Figure 2.3 Box ground state amplitude in the charge state basts for respectively
large capacitance Josephson junctions a) and for ultrasmall capacitance junctions
b), ¢). These two latter amplitudes are represented respectively for wvoltages

U=2nye/C and U=(2n,+1)e/C. For small junctions, the span of the ground state

wave- function V) in the charge state basis is reduced, and quantum fluctuations

occur only between two neighboring charge states.
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the basis [n) writes:

Hy= =225 (n 4 1)l + ) {41, (2.5)

where the Josephson coupling energy F; is assumed to follow the Ambegaokar-Baratoff rela-
tion:
h A

E;=— . 2.6
J 8 €2RT ( )

2.1.2.b. The total Hamiltonian
The total Hamiltonian H of the box is the sum of the Josephson and of the electrostatic

Hamiltonian. Its expression in the |n) basis writes:

H = H.+H, (2.7)
= S4B (n -0 |n) (n —%(mﬂ) (n] + [n) (n + 1))

2.1.2.c. Squeezing of charge fluctuations in small capacitance junctions

Let us first examine the case when the charging energy E. is small compared to the Joseph-
son energy F;. Such a situation is encountered in typical large capacitance Josephson junc-
tions. In this regime, the Hamiltonian H,; can be treated as a perturbation and one can show
that the ground state |¥) of the system is given by a coherent superposition of a large number

of charge states:

+o0 9
) = Y e wE|ng+k)
k=—00
here W ! (E‘f)% (2.8)
wihere = —= . .
V2 \ Ee

The components of |[¥) in the charge basis have a Gaussian envelope (see Fig. 2.3, left) with
a width W which directly illustrates the competition between the Josephson energy and the
charging energy. These large quantum fluctuations of the charge number n can be seen as a
manifestation of the Heisenberg uncertainty principle. Indeed, as pointed out in the beginning
of that chapter, the conjugate variable of n is the phase ¢. For large Josephson couplings, the
phase ¢ is a good quantum number, thus leading to important quantum fluctuations of its

conjugate variable.
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Figure 2.4. Effective spin representation for the superconducting island charge state. The
Hamiltonian restricted to two netghboring charge states can be seen as a spin 1/2 interacting

with a magnetic field which components are given by the box parameters.

A eigen energies

Figure 2.5. Energy bands of the superconducting box obtained in the framework of the spin
representation. The box ground state correspond to the symmetric eigenstate which has an

hyperbolic dependence upon the gate charge and asymptotaticaly reaches pure spin states.
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The above result predicts that these quantum fluctuations ,characterized by the width W,
are greatly reduced for an electrostatic energy comparable to the Josephson energy (E;/E, ~
1). Coulomb charging limits the quantum delocalization of the charge which fluctuations are
“squeezed” (see Fig. 2.3, right). In this intermediate regime where E,. and E; are of the same
order of magnitude, it is sufficient to take into account the Josephson coupling between a few
lowest electrostatic energy states. When E; is smaller than F., considering the two lowest
energy states is in fact sufficient to determine the Coulomb staircase with great accuracy.

Since the superconducting box devices that we have fabricated precisely lie in this range of

parameters, we calculate the Coulomb staircase in this approximation.

2.1.2.d. Effective two-level model of the superconducting box

We restrict the description to the gate charge interval 0 < n. < 1 so that the two neighboring
charge states that need to be considered are |0) and |1) .

For the sake of convenience, the reference level for the energy of the states is chosen to be:
Ey=4E, (1 - C,U/e)*. (2.9)

The total Hamiltonian H (Eq. 2.7) expressed in the restricted Hilbert space (|0),[1)) is

represented by the following matrix :

1(-E -E
H_§(_EJ e ) , (2.10)
where £ = 4E.(1 — C,U/e) = 4E.(1 — 2n.) has now a linear dependence upon the gate

voltage. One can identify this expression with the Hamiltonian of a spin % in a magnetic field

by expressing H as a function of the following Pauli matrices:
0 1 -1 0
o, = ( 10 ) and o, = ( 01 ) , (2.11)

E E —
H:—Eaz—%al:—?.h ,

thus leading to:

(2.12)
where 5 is the spin operator of the effective spin % and 7 the effective magnetic field (see
Fig. 2.4) with components in the basis (x,y,2): [E;/2,0,2E. (1 — 2n.)].

Since we are looking at quasi-equilibrium properties of the system, the time of observation

is supposed to be much larger than the relaxation time of the spin. In such a case, the
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eigenstates of this Hamiltonian are given by the following combinations:
T,0) :COS%|O) isin% i (2.13)

where v =Arctan (E;/E). At the degeneracy point £ = 0, the eigenstates |V,) and |V,) are
the symmetric and antisymmetric combinations of |0) and |1). The associated energy bands

E, and E have a hyperbolic gate voltage dependence (see Fig 2.5):

E 2
E.), = :I:Ec\/(l —2n,)% + <4EJ ) : (2.14)

The Josephson Hamiltonian results in an anticrossing of the two levels with a gap £, at £ =0

(see Fig. 2.5).

2.1.2.e. The zero temperature Coulomb staircase in the two-level approximation
Since the ground state is a superposition of two states with different numbers of Cooper
pairs in the island, the mean value of n noted (n) is no longer quantized but varies continuously
with the gate voltage U. At zero temperature, the number of excess pairs in the island is given

by the projection of n on the symmetric eigenstate:

(Mg = [(W]70) = sin® L
= 1 + (CgU/e B 1)
’ 2\/<1 — C,U/e)’ + (E;JAE,)"
= 3+ ezl (2.15)

2 2\/(2nc —1)*+ (EJ/4EC)2'

The competition between the Josephson coupling and the charging effects results in a
rounding of the Coulomb staircase, as shown in Fig. 2.6. In particular, the maximum staircase
slope is equal to 4E./E; and directly reflects this competition. Taking advantage of the 2e-
periodicity, we can extend the obtained results to the whole Coulomb staircase. Compared
to the staircase obtained in the absence of Josephson coupling, the steps are rounded at zero
temperature due to quantum fluctuations of the charge, as shown in Fig. 2.7. The two-level

approximation is valid as long as the slope at the center of the plateaus remains small.
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Figure 2.6: Average excess charge (n) at T=0 in the superconducting island as a function of the
gate voltage C,U/2e, for E;/E. = 0.01,0.3, 1.
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Figure 2.7 Top: Energy bands of the superconducting box when both electrostatic and
Josephson Hamiltonians are taken into account. The Josephson coupling forces
electrostatic levels to anticross. The gap between the ground level and the first excited

level is equal to the Josephson energy EJ .

Bottom. Average excess charge of the island at T=0 obtained from the ground state
energy. The "Coulomb staircase” is rounded due to quantum fluctuations of the charge.
At transition voltages (n.=CgU/2e=hal f-integer), the box is in a macroscopic quantum
superposition of two charge states difering by one Cooper pair. The slope of the curve at

this point directly illustrates the interplay between charging and Josephson effects.
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2.2 Finite temperature calculation of the Coulomb
staircase taking into account the quasiparticle states

We calculate in this section how the shape of the Coulomb staircase is modified by the
finite temperature and magnetic field when island states with quasiparticles are taken into
account. In addition to the charge states ¢ = 0 and ¢ = 2e which contain an even number
of quasiparticles in the island, we also consider the charge state ¢ = e which contains an
odd number of quasiparticles in the island. The average charge in the island is obtained
by weighing these three charge states according to their occupation function given from the
partition function [1].

Refered to the energy E, given by Eq.(2.9), the electrostatic energy of the ¢ = e state

writes:
B =E[(1-CUle) —1]. (2.16)

The odd-even free energy difference A (T, H) between odd and even charge states decreases
when the temperature or the magnetic field increase [1] . At zero temperature and zero
magnetic field, A is the lowest quasiparticle energy. It coincides with the BCS superconducting
gap A only if the sample is perfect. The thermal average (n) (T") of the island excess charge
is obtained from the partition function and takes the following expression:

|<\I’s| n |\I/S>|2 e Bls |<\I/a| n |\I/a> |2 e—Bba e—B(E1+5(T,H))
e—BEs | g—BEa 4 o~ B(F1+A(TH))

(n) (T) = At

which can be related to the zero-temperature result (n),_,:

sinh % (2n. — 1)* + (B /AE.)"
() = 5 + Gal )

1
5 2 2(Ec—A) X ((TL>T:0 - 5) . (2.18)
cosh (%\/(2710 — 1)+ (E,;/AE,) ) + %e FRT

This expression can be further simplified in the case when A> E., i.e. when odd charge

states are not thermally populated:

1

) =3+ <<n>T_0 - %) % f(ne, EofksT) | (2.19)

where the distortion factor f(z,y) is given by : tanh l2y\/(2x —1)*+ (E,/AE,)*| . (2.20)
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Figure 2.8. Three dimensionnal representations of the temperature dependence of the

Coulomb staircase without Josephson coupling (top panel) and for a Josephson coupling

energy equal to one third of the charging energy (bottom panel). In this last case, the

Coulomb staircase becomes temperature-independent at low temperature (KI'KE.j), due

to the gap in the energy band diagram (see Fig. 2.7). This gap makes also the box ground

state more robust with respect to thermal fluctuations, as illustrated by the staircase

smearing which occurs at higher temperature compared to the case without Josephson

coupling (top panel).

- 96 -



2.2

The corresponding thermal smearing of the Coulomb staircase is shown in Fig. 2.8 (bot-
tom panel) in the particular case E; = E./3. Below a temperature of the order of E;, the
Coulomb staircase becomes temperature independent and coincides with the zero-temperature
result. This can be seen in Fig 2.9 which shows that the distorsion factor f is close to one at
low temperature. This relative robustness of the Coulomb staircase with respect to thermal
fluctuations is due to the gap F; between the two eigenstates.

The disappearance at low temperature of the thermal contribution to the smearing of
the staircase, and the persistence of rounded steps are then two signatures of the coherent

superposition of charge states occurring in the superconducting box.

1.0
0.8
0.6

f

0.4+

0.2

0.0 : : :
0.0 0.5 1.0
CgU/2e

Figure 2.9. Distortion factor f (Eq. 2.18) of the superconducting Coulomb staircase as a func-
tion of the reduced gate voltage for typical parameters E;/E. = 0.3 and for reduced tempera-
tures from bottom to top: kT /E. = 1,0.25, 0.5,0.1. For temperatures such that kpT < Ej,
the distortion vanishes and the Coulomb staircase coincides with the zero-temperature result.

2.2.1 Effect of the electromagnetic environment

Can a coherent superposition of two different charge states be observed in “real-world”
experiments, in which the charge degrees of freedom are coupled to a dissipative electromag-
netic environment and to a measuring electrometer? The contribution to the decoherence of
the measuring electrometer is in practice dominated by the effect of the circuit in which the
box device is embedded. As explained in more details in chapter 4, in which the supercurrent

through a single Josephson junction coupled to an arbitrary electromagnetic environment
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Figure 2.10. a) Schematic of the superconducting box coupled to its electromagnetic
environment, which has been modeled by an impedance Z(®) in series with the voltage
source. b) same circuit, in which the junction is represented by a capacitor Cj in
parallel a pure Josephson element. c) Equivalent circuit seen by the Josephson element.
All capacitances have been incorporated in the effective impedance Zi(o).
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calculated, dissipation strongly alters the quantum behavior of the system and tends to restore
a classical regime. The influence of the electromagnetic environment in the particular case of
the superconducting box has been done by Neumann et al. [4] and we present here their
results which are relevant for our experiments.

The electromagnetic environment can be modeled as a series impedance Z(w) placed be-
tween the voltage source and the gate capacitance (see Fig. 2.10, a). It can be shown [3] that
the circuit is equivalent to a pure Josephson element in series with an effective impedance
Z(w) (see Fig. 2.10,c) given by:

K? Cy

Zy(w) = h -
W = keor ) e Meaha

(2.21)

In all our box experiments the factor K? is smaller than 1072 and the effective series
impedance, of the order of the vacuum impedance 377 €2, is much smaller than the resistance
quantum Ry. The further attenuation of the effective impedance due to the “insulating” action
of the gate capacitance makes the coupling between the charge states and the environment

states extremely weak, so that a pertubational approach is sufficient.

2.2.1.a Effect of the environment on the ground state
By mapping the box Hamiltonian onto a spin-boson Hamiltonian, Neumann et al. [4] have
shown that the effect of the environment on the ground state can be neglected when the

following condition is fullfilled:

dw < —.
£, w 4

o VA
/ Re (Ziw) fix (2.22)
This condition, analysed in more detail in Chapter 4, is well satisfied in all our experiments.
This ensures that the environment should not affect significantly the Coulomb staircase of the

superconducting box in our experiments.

2.2.1.b Relaxation of the excited state
In presence of an electromagnetic environment, the excited state |¥,) is no longer stable.
It can decay to the ground state |¥,) by creation of electromagnetic excitations [6} In the low

impedance limit, the perturbational calculation of the decay rate using the golden rule gives:

. (EJ>2 Re[Z,(w = ¢/h)] (2.23)

“ 2\ ¢, €

where € is the energy difference between both levels and ¢, = h/2e. In the case of a pure
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ohmic series resistance R, the quality factor of the excited state is Q = Ry /2RK? at the level

crossing. This quality factor is above 10 in our experiments.

2.3 Experimental realization

2.3.1 Measurement of the island charge

In our experiment, we have measured the number of excess Cooper pairs in the island
by coupling it electrostatically to a single electron transistor (SET) used as an electrometer
(see appendix 2-C). The electrometer measures a time-averaged value @ which is equal to the
thermal average value (n). Since a SET electrometer has a relatively low cut-off frequency
(around 100 Hz) and is also subject to 1/ f noise (see Chapter 5 for the noise characterization of
SETs), the charge detection was performed in the frequency range 0.1-100 Hz. In this domain,
the detection precision is better of 1072%¢/ vHz, which ensures a sub-electron accuracy for the
island charge measurement even if the coupling capacitance between the box island and the

SET island is small compared to the box island capacitance.

2.3.2 Experimental set-up

A micrograph of the sample used in the experiment reported below is shown in Fig. 2.11
together with its corresponding schematic diagram. The superconducting box circuit and
the measuring electrometer can be seen at the top and at the bottom of the picture respec-
tively. Both circuits are coupled by a small coupling capacitor placed at the end of the long
T-shaped SET island. Box and SET circuits are simultaneously fabricated using a three-
angle-evaporation of metallic layers through a nanofabricated trilayer mask on an oxidized
silicon chip (see chapter 6 for fabrication techniques). Both devices consist of two identi-
cal Al/AlO, /Al junctions in series which confers a symmetric structure to the whole circuit
(Fig. 2.11, bottom panel). The fact that the box island is coupled to two reservoirs instead
of one does not change its function nor the “topology” of the circuit. However, it enables the
measurement of the serial resistance of the tunnel junctions at room-temperature, a crucial
information that would be impossible to obtain with the box circuit initially proposed. The
configuration of the superconducting box is recovered by connecting the two junctions to the

same ground. This results in an effective junction with double capacitance and double
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Figure 2.11. Top: Scanning electron micrograph of the nanofabricated sample used in the
box experiment. The superconducting box in the upper part is capacitively coupled to the
electrometer (lower part). The sample was fabricated by electron beam lithography using a
trilayer process (see fabrication techniques in chapter 6). Josephson junctions (bright
dots) are obtained by overlap of oxidized aluminum layers. Large pads (center right and
left) are grounded and act as shielded guards.

Bottom: Schematic diagram of the experimental setup, sketched with a geometry in
correspondence with the top micrograph.
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Figure 2.12. Derivative of the average charge of the box in the normal state as a
function of the reduced gate voltage nOZCgU/e for decreasing temperatures. Fach curve

has been normalized to area unity, and shifted for sake of clarity. Experimental

curves (solid lines) are measured using the lock-in technique, under a magnetic field
of 0.1T. Fitting curves (dashed lines) are obtained from the thermal smearing model
described in Appendix 2-A.
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Figure 2.13. Fitting parameters of the normal Coulomb staircase as a function of the

0.00

temperature, deduced from curves above. The average slope gives a charging energy of

E,.=0.63kpK.
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Josephson energy. Implementing copper leads in series with the superconducting Al reservoirs
proved to be useful to suppress spurious out-of-equilibrium quasiparticles. These normal-metal
electrodes close to the device play the role of “filters” for quasiparticles. The measurement
procedure of the box charge is presented in Appendix 2-C: a lock-in technique is used to
measure the derivative of the Coulomb staircase %<—$ (U) with a good signal-to-noise ratio. The
measured curve is then numerically integrated in order to obtain the “Coulomb staircase”.
We first explain how we have determined the parameters of the experiment in order to make
the comparison with the theoretical predictions. Since the effect of the Josephson coupling
is to smear the Coulomb staircase, it is particularly important to check that spurious effects,
such as extraneous electromagnetic noise, do not significantly contribute to a smearing of

the Coulomb staircase. We thus discuss what evidence we have that the intrinsic Coulomb

staircase of the superconducting box was indeed measured.

2.3.3 Experimental determination of the box parameters

Four relevant energies are involved:
e the island charging energy F.
e the Josephson coupling energy E,
e the odd-even free energy difference A (T, H)
e the thermal fluctuation energy kT
The two energies E, and E; are determined during the fabrication by respectively choosing
the tunnel junction areas at the electron-beam lithography stage, and transparencies at the
oxidation stage (see Appendix 6—D). The third energy, A, is sample dependent, but can also
be continuously reduced down to zero during the measurement by applying a small magnetic
field, as explained in Appendix 2-D. The lowest accessible value of the thermal energy kgT
given by the base temperature is of the order of 20 mK. All these energies, necessary to the
prediction (Eq. 2.18) of the Coulomb staircase, are successively obtained during the experiment

from independent measurements.

2.3.3.a Determination of the electrostatic energy
Superconductivity in the aluminum electrodes is suppressed by applying a magnetic field
of 0.1 Tesla. The device then becomes a single-electron box, the island charge is quantized in

units of e and the Coulomb staircase is e-periodic. The reduced gate charge is ny = n./2. We
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Figure 2.14 Experimental determination of the even-odd free energy difference from the
Coulomb staircase curve at increasing magnetic field (at 20 mK). The arrow shows the

zero-field free energy Z(T, 0) deduced by extrapolating the curve.
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compare the measured derivative of the Coulomb staircase to the theoretical prediction ( see
appendix 2—A) in order to determine the charging energy E. and to check that no spurious
smearing is present. For each experimental curve %<—:O>(n0) (see Fig. 2.12), we determined the
best fitting parameter kgT/EXY, plotted as a function of the measured temperature in Fig.
2.13. The fitting parameter varies linearly with temperature down to the lowest temperatures,
providing strong evidence that no extraneous noise source contributes to the smearing of the
staircase. The charging energy of the box in the normal state, obtained from the slope of the
best linear fit of the data points, is EY ~ 0.63 kgK. This value is in good agreement with our
estimate of the tunnel junction capacitance.

However, one must take into account the renormalization factor of the capacitance due
to virtual single electron tunneling. As shown in appendix 2-B, the bare charging energy is
E? = EY /(1 — 4g), where g is the tunneling strength parameter g = Ry/ (47°Ry,/) , where
Ry, is the resistance of the parallel combination of the two junctions. The superconducting
state charging energy F. is itself renormalized by virtual quasiparticle tunneling and is then
given by:

Bo= Bl —4gT <%)) -t _(143F4§)KC))

In our case (4 ~ 0.3 and g ~ 0.02), the renormalization factor ES/E! is about 1.05.

(2.24)

2.3.3.b Estimation of the Josephson energy FE;

The Josephson coupling energy E; was estimated from the Ambegaokar-Baratoff formula:
E; = hA/(8¢*Ry),). The superconducting gap A, deduced from I—V curves, is A = 2.33 kzK.
The tunnel resistance of the two junctions in series measured in the normal state is Ry, ~

36.6 k2. Assuming that both junctions are identical, we obtain the value E; = 0.20 kgK.

2.3.3.c Estimation of the odd-even free energy difference A (T, H)

This energy can be deduced from the Coulomb staircase measured at intermediate magnetic
fields, in the regime when A (T, H) is reduced below E,, thus leading to the appearance of
intermediate steps in the Coulomb staircase. The analysis of the Coulomb staircase leads to
a precise determination of A(H) [6]. The variations of the measured A(T ~ 0, H) with the
magnetic field are shown in Fig. 2.14. The extrapolation of the curve to H = 0 provides
lim A (T~ 0,H) ~ 0.74 kzK , which is smaller than the BCS gap: A = 2.33 kzK. We

H—0
attribute this reduction to the existence of one or several discrete quasiparticle states. Such
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figure 2.15 Derivative of the average charge of the box in the superconducting case as a
function of the gate charge ng for decreasing temperatures. Curves have been shifted
for sake of clarity and thair area normalized. Experimental curves (solid lines) are
measured using the lock-in technique. Dashed curves are theoretical predictions obtained
using Equation 2.17 without any adjusted parameter.
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figure 2.16 Effective temperature deduced from fitting the box Coulomb staircase, as a
function the temperature measured by the thermometer in both mnormal and

superconducting cases. Quantum fluctuations are neglected in this last case. The normal
box has a staircase smearing well described by a temperature effect whereas a
discrepancy appears in the superconducting curve at temperatures below 80mK, proving

that quantum e ffect must be taken into account.
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states, commonly observed in other similar samples, can even lead to the suppression of
the 2e-quantization. Their origin is not understood, but might arise from impurities in the
aluminum island or in the oxide barrier of the junctions. It is important to notice that in
the experiment performed by Lafarge et al. in a superconducting box connected to a normal
reservoir of charges, a similar measurement gave the BCS gap. The odd-even free energy

difference A (T, H = 0) is well described at finite temperature by the following law:

A(T,H=0)~A(0,0)— kgTIlnm (2.25)

where m is the degeneracy of the quasiparticule state. We have assumed that this degeneracy
is small enough so that the entropic contribution to A (T, H = 0) is small compared to the
energy contribution A (0,0). We have thus used the zero-field-extrapolated low-temperature
value II}LI}OA (T'=0,H) ~ 0.74 kgK (see Fig. 2.14), in the temperature range for which the

contribution of the regular BCS quasiparticles can be neglected.

2.4 Temperature dependence of the superconducting
Coulomb staircase

The variations of the Coulomb staircase derivative with temperature are shown in Fig. 2.15
together with the theoretical prediction (Expr. 2.18) calculated using the measured parame-
ters. The theory reproduces well the shape and the width of the curves. In particular, the
measurment at the lowest temperature is well fitted by the zero-temperature prediction which
only depends on the ratio E;/FE¢ ~ 0.3. We have further checked that these results are not
an artefact of the specific lock-in measurement technique by directly measuring the Coulomb
staircase. The signal-noise ratio is then much worse but can be partially recovered by averag-
ing curves obtained sweep after sweep. The Coulomb staircase obtained at 20 mK is also in
good agreement with the theoretical prediction, as shown in Fig 2.17.

Finally, we have estimated the effective temperature 7; ;s needed to account for the observed
smearing assuming no Josephson coupling. The variations of 7;;; with temperature are shown
in Fig. 2.16, together with the determination in the normal state given by the best fit obtained
using Eq. 2.32 of appendix 2-A. Below 80 mK, the values measured in the superconducting state
reaches a plateau clearly out of the error bars of the curve in the normal state.

Given all these control measurements, we attribute the smearing of the Coulomb staircase
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Figure 2.17: Time averaged number of excess Cooper pairs in the island as a function

of the reduced voltage CqUle. The experimental curve (solid line) is compared to the

theoretical prediction (dotted line), ploted for the parameters deduced from the
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Figure 2.18. Micrograph of the sample for the SQUID-Box experiment. Similarly as in the
superconducting box presented in Fig. 2.11, an electrometer is coupled to the device. The island
of the box is here embedded in a superconducting loop through which a magnetic flux ® can be

applied. This SQUID con figuration should enable a flux-tunable Josephson coupling for the
Superconducting box. geff
J A

E‘jf;
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Figure 2.19. Top left: Schematic diagram of the superconducting box with tunable Josephson
coupling. Top right: Dependance of the effective Josephson coupling energy E; with the flux
® in the loop. Similarly as in a DC-SQUID, it is a function ® j—periodic of the magnetic flux.
The contrast is determined by the Junction transparency unbalance.

Bottom: Resulting Coulomb staircase patterns for respectively mazximum (black curve) and
minimum (gray curve) values of the effective Josephson coupling energy E,;. The flux
provides an "in-situ" modulation of the staircase pattern.
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observed at low temperature in the superconducting box to the effect of the Josephson cou-
pling. This measurement provides the first direct evidence of a coherent superposition of two

charge states in a single Cooper pair device.

2.5 Possible improvement : the SQUID-box
experiment

The major drawback of the superconducting box experiment is that its parameters are
determined at the fabrication stage. An important improvement of the experiment would be
to enable an in-situ adjustment of the Josephson energy or of the charging energy. In a second
series of box experiments, we have implemented the in-situ modulation of E; by connecting
the two junctions of the box island by a superconducting lead. The two junctions then form a
DC SQUID which behaves as an effective junction whose Josephson energy can be periodically
modulated by applying a small magnetic field (see Fig. 2.19). A micrograph of the sample
realized for such a SQUID-BOX experiment is presented in Fig. 2.18. The circuit pattern
reaches a complexity which necessitated the development of novel fabrication techniques such
as multilayer fabrication, presented in chapter 6. Although we have tried different samples with
different island and quasiparticle filter geometries, these experiments have not been successful

because of the existence of finite quasiparticule states at energies below E,.

2.6 Analogy with the superconducting transistor

The superconducting transistor (see Fig. 2.20) [12] which measures the island charge can
also be used itself to prove that the ground state of its island is a coherent superposition of two
charge states. The I — V' characteristic of the transistor is presented in Fig. 2.21. It shows a
zero-voltage branch with a supercurrent, which switches as the current is increased to a finite
voltage branch for which the conduction is due to quasiparticles. The switching occurs for a
current I, which fluctuates from sweep to sweep but whose average a marked gate dependence.
Joyez et al. [10] have shown that the gate variations of the switching current well reproduce
the variations of the maximum supercurrent that can be sustained in the ground state.

We have measured the variations of I as a function of the gate voltage (Fig. 2.22). The

curve is 2e-periodic with respect to the polarizing charge C,U on the island. It has sharp
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Figure 2.20. Schematic diagram of the superconducting transistor. The island is connected to
two superconducting electrodes by Josephson junctions. The transistor is biased by a current
source. Like the superconducting box, the island can be polarized by a capacitance connected to
a voltage source U.
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Figure 2.21. Experimental current-voltage characteristic of the superconducting transistor

operated in a current-biased mode. The zero voltage branch corresponds to the superconducting
state of the transistor. For a current equal to the switching current Is, the transistor switches
to the finite voltage branch for which both quasiparticles and Cooper pairs are transferred.
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Figure 2.22. Comparison of the Coulomb staircase of the superconducting island with the
gate dependence of the swiching current in the superconducting transistor. The switching
current ts maximum at voltages for which the island of the box show large quantum
fluctuations. The cusp shape of this curve provides another of the coherent superposition of
charges in a small superconducting island.
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maxima which values are close to the maximum possible value Iy, = e Ej/h [13]. These
maxima occur for voltages U = (2n+ 1)e/C, corresponding to level crossings in the supercon-
ducting box experiment, as depicted in Fig. 2.7. At the opposite of the conductance peaks in
the normal state SET, The peaks in the switching current curve I;(U) curve are cusp-shaped.
This particular feature is a signature of the coherent superposition of the two charge states
for the island. The minima of I;(U) occur when the polarizing gate charge is an integer num-
ber of Cooper pairs. There, the quantum fluctuations of the number of excess Cooper pairs

in the island is greatly reduced, and the supercurrent is of the order of :
Inin = Imal E;/E:) = (e/) E3/E, (2.26)

The supercurrent modulation by the gate voltage is reminiscent of the current modulation in
a field effect transistor (FET). However, unlike the FET whose principle is based on statistical
variations of a macroscopic number of carriers, the modulation is due here to the control of

the quantum state of the whole device.

2.7 Can the superconducting box provide a robust
Q-bit for quantum computing 7

The possibility of using quantum mechanics for computing purpose is a rather old idea
which presently attracts a renewed interest [14]. Indeed, it has been theoretically proven that
quantum computing could solve complex computational problems, such as the factorization
of large integers, which are beyond the reach of sequential Von Neuman computers whatever
their speed. In some sense, a quantum computer with its entries in a coherent superposition
of states, and which follows a unitary evolution, performs at the same time all the calculations
for each entry state. The requirements for a quantum computer are drastic because the
preservation of the coherent superposition requires an extreme decoupling from the environment.
The amount of decoherence that can be tolerated is presently the subject of intense researchs.
In particular, error-correcting codes which tolerate a finite amount of decoherence per bit
have recently been proposed. Different quantum systems have been considered to implement
quantum computing: the most serious candidates are ion lattices in optical molasses, coupled
magnetic systems, nuclear spins and coupled quantum dot arrays. The main difficulty is the

preservation of the coherence while maintaining the capacity of an external control. Not to
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mention, none of the proposed systems is compatible with even low-scale integration, but
some of them could be used to produce entangled quantum states with many-state quantum
correlations. Using single Cooper pair devices for similar purposes is another interesting
possibility. Although the problem of gate adjustment seems to limit the use of single Cooper
pair devices for quantum computing purpose, we think that these devices are among the best
candidates to fabricate entangled states. Another system suitable for implementing similar

quantum states is presented in next chapter.

2.7.1 Coding a Q-bit

In quantum computing, the information can be coded by a two-state quantum system and
its ground state is denoted as a “Q-bit”, as a contraction of Quantum Blnary digiT. Such a
terminology was, of course, given by analogy with “classical bits” used in today’s computers.
As we have seen, the superconducting box provides a solid-state, readily integrated two-state
quantum system. The two lowest energy states of a superconducting box can be thus used
to code a single Q-bit. An array of superconducting boxes, controlled by gate voltages, and
coupled to one another by Josephson junctions, could be used to implement a logic function.
Such an array is equivalent to an array of coupled spins % placed in a locally controllable

magnetic field.

2.7.2 Estimation of the coherence time

Decoherence results in “fatal errors” in a quantum computer. We have shown in section
2.2.1 that the decoherence in the superconducting box is mainly due to the dissipation in
the electromagnetic environment of the circuit. Using the expression of the decoherence rate
already mentioned (Eq. 2.23), we estimate that the life-time of a Q-bit for typically encountered
environment resistances, can be longer than 100 ps. This time is already sufficient to perform

interesting manipulations on the quantum state of the whole system.
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Conclusion

The experimental results presented in this chapter show that the “fully superconducting”
box is more than a simple “sequel” of the single electron box. In this system, the interplay
between charging effects and the Josephson coupling results in a coherent quantum superpo-
sition of two charge states for the ground state. A finite gap separates the ground state from
the first excited state, which is discrete. Our experiment provides an experimental evidence of
the Josephson effect with a single Cooper pair. Moreover, it opens the way to the realization
of circuits which takes advantages of the coherence of superconductivity to show evidences of
macroscopic quantum coherence. An example of a more complex device developped for that

purpose is provided in next chapter.
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Appendix 2—A
Thermal smearing of the Coulomb staircase in
“normal-state” electron box

In the normal-metal (i.e. non superconducting) single electron box, the quantization of the
charge is affected by thermal fluctuations. A direct determination of the resulting smearing of
the “normal” Coulomb staircase can be obtained from the analytic expression of the partition

function.

Analytic expression of the partition function

The partition function of the system writes :

—+o0

3= Y oxp(—En/ksT), (2.27)

n=—oo

where E,, = E, (n — ng)” is the electrostatic energy of the box in the normal state withn extra
electrons, and ny is the number of electron polarized by the gate (ng = C,U/e).

This series can be rewritten as:

Ec Ry Ec ECTLO
3 = exp (—kBTng) 1+ QZexp (—]@—TnQ) cosh (— T n)

One can identify the second factor with the expansion of the special elliptic function O3 [8}

. (2.28)

—+o0
O3 (u,q) =142 Z q” cos(2nu). (2.29)

n=1

the correspondence leads to the expression:

E. E, ~
3 [Feymo, T] = exp (—kB—Tng) X O3 [u =1 k‘B?'_;S’ q=e P/RET] (2.30)

Thermal average of excess electrons in the box

The thermal average number of excess electrons (n) in the island is related to the partition

function by:

kT (Oln;
<n> - 2EC ( 87’7/0 ) ) (2.31)
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which leads to the following analytic expression of (n):

993 (;Emng _—E./kpT
]{IBT dng (Z ICBT’6

<’N,> (Ecv N, T) =
2E. | @, (z%, e—Ec/kBT>

(2.32)

We have checked that this formula matches the expressions obtained using the high tem-
perature (kT > E.) and low temperature (kg1 < E.) expansions of the partition function
in the appropriate limits. Our result is also well-suited to numerical calculations in the whole

temperature range. Plots of (n) (ng) at different temperatures are shown in Fig 2.23.

1

1

0.5

©

0.25

),

0.25 0.5 0.75 1

N,

Figure 2.23: Average number of excess electrons (n) as a function of the reduced gate chargeny,
for the reduced temperatures kT /E, = 0.01,0.05,0.1,0.2,0.3. As the temperature increases,
the step is continuously smeared by thermal fluctuations.
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Appendix 2—B
Renormalization of the charging energy by
virtual quasiparticle tunneling

We have used in this chapter the standard Josephson Hamiltonian to describe the coupling
between two superconducting electrodes in contact through a tunnel junction. This Hamil-
tonian is obtained by treating the tunnel Hamiltonian at the lowest order in perturbation
theory. The matrix element between states |n)and |n £ 1) which differ by one Cooper pair in

the island is:
n|Hy|ntl)=—-E;/2, (2.33)

where F; is given by the Ambegaokar-Baratoff formula. We calculate in this appendix the
correction §F,, to the energy of a state |n) at the same order in perturbation. The tunnel
Hamiltonian couples a state |n) to states which differ by one electron charge in the island.
Assuming that all electrons in the superconducting electrodes are initially paired, such states
contain one quasiparticle in each electrode. Their energy £.; referred to the electrostatic

energy of state |n) is thus:
5:&1 =ec+¢e + E:I:l,

where ¢ and ¢’ are the energies of the quasiparticles which have been created and F., the

change in the electrostatic energy. This electrostatic energy change writes:
1

We assume here that the quasiparticle gap A is large enough so that both energies £, are
positive: the state |n) is stable respectively to single electron tunneling transitions. The energy
of the state |n) is however slightly shifted by virtual single electron tunneling transitions. The

standard perturbation theory leads to the following expression of the energy shift 6 ), :

2 e e / ! 1 1
SE, =t /0 de fL(a)/O de’ fr(e') [S—H + 5—1] , (2.35)

where ¢ is the tunnel matrix element and fr(r) the quasiparticle density of states in the left

(right) side of the Josephson junction. We assume here that the density of states follows the
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BCS prediction:

e/A
flo = L2, (2.30
o — 1
where p denotes the density-of-states of the normal metal at the Fermi level. The square of

the matrix element ¢ is related to the tunnel resistance Rr through the relation:
IOLPRt2 = Ri/ (47T2RT) )

where p; and pj are respectively the density-of-states on both sides of the junction. We define
the reduced tunneling strength parameter g = Ry / (47 Rr) .
We now focus on the calculation of 6 £, close to the center of the steps (n, = 0) at the first

order in n,. Using Eq. (2.35), one finds:

400 +o0 , / 1 E2
SE] = pppt? / de / de' ——= c 0L ng (2.37)
A A Ve — A2\e? — A2 (e+ ¢ + E,)
oo too A "IA 16 E?
prRtQ/ de/ de e/ e/ 0 B ng =, (2.38)
2 e e+e+E.)
A A \/AQ 1 \/F —1 ( c

These integrals can be rewritten using the Laplace transform:

1 1 [t
e — duv?exp—u (E,+e+¢).
(e +e +E.)° 2/0 ( )

One then obtains :
2

+0oo +oo
6B} =8 E? t2ng/0 du e~ "Ee 42 l 1 dx\/% exp —uAx| . (2.39)

One recognizes in the inner integral the modified Bessel function of the second kind K_:

+oo T
K (a)= dxr————exp —ax, 2.40
1( ) : \/11:27_1 Xp ( )
which leads to:
+oo Ioh
SE} =8 E? t2ng/ du "3 u* K2, (u) =8 E*t*n,l (z) . (2.41)
0

The Laplace transform I' () of K2, can be expressed in terms of special functions:
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oo 2z 33 x 3 35 . x
I'(z)= du e u? K? (u) = == 3F» [ 1,2,3; =, == | + —m*H. - =,2,=
) /0 v 1) 3“( ’2’2’4)+327r 2“(2 2”4)
(2.42)
where 3F, and Hypq are generalized hypergeometric functions.

Finally, the energy correction § E! given by Eq. (2.41) can be absorbed by a renormalization
of the island charging energy E. :

B = E,[1 — 4gT(E./A) (2.43)

The graphic representation of the function I'(E./A) is presented in Fig. 2.24:

A F(EC/A)

0.8}
0.6
0.4}

0.2}

Figure 2.24. Plot of the function T'(E./A).

This result is in agreement with the renormalization factor found in the normal case [6]

which corresponds to the limit A — 0 :

EYN =lim E* = E. |1 —4g lim I'(z)| = E. (1 — 4g) (2.44)

A—0 T—+00

The results of this appendix have been also used in chapter 1 in order to determine the bare
charging energy of the normal SET island using the phenomenon of resonant Cooper pair

tunneling in the superconducting transistor.
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Figure 2.25. Experimental wiring of the experiment placed inside the cryostat. We have indicated

the typical operating temperatures for each stage. The sample (bottom gray area) is connected to
the measurement apparatuses through carefuly filtered coaxial lines. The rectangular elements
(marked F) are the miniature cryogenic filters mentioned in the text. The current bias is obtained

by charging the voltage source Vi by a serial impedance of 12MQ. The optional feedback loop (top)

18 represented in gray.
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Appendix 2—-C
Techniques for the experimental measurement of
the excess charge of the superconducting box

Experimental circuitry The schematics of the experimental set-up used in the experiments
is presented in Fig. 2.25. The sample (gray zone) is thermally anchored to the mixing chamber
of a *He—*He dilution refrigerator, Which routinely ensures an operating temperature of 20
mK. Measuring and bias lines were carefuly filtered using miniature cryogenic low-pass filters,
made of a RC meander lines [9] which provide a large attenuation in the GHz range. Such filters
have proven to be useful to prevent single electronic devices from parasitic photon assisted

tunneling due to the much higher noise temperature of the measuring and biasing apparatuses.

Charge detection

As pointed out in section 2.3.1, the charge detection is performed by a buit-in single electron
transistor embedded on the same chip. The principles and limitations of charge detection using
a normal metal single electron transistor (SET) as an electrometer are presented in chapter 5.

In this experiment, however, one has to notice that the detection of the excess island
charge in the superconducting case is somewhat different since the electrometer is in the
superconducting state as well. Nevertheless the supeconducting transistor provides almost
the same charge detection accuracy. The voltage modulation which is induced by polarizing
charges is then obtained by operating the superconducting SET near the superconducting
voltage gaps +2A /e for which quasiparticles are transferred. Biased near one of these two
points, the voltage across the transistor V., is a e—periodic function of the island charge.
Therefore the charge detection principles as well as the typical charge noise level are similar

as for normal metal SETs.

Parasitic cross-talk capacitances

Typical values obtained for the capacitances are presented in the table 2.26.

Cab | Cge | Cc | Ceb | Cbe | Cib | Cje

85aF| 50aF | 150 aF| 10aF | 30aF | 26 fF | 1.3fF

Table 2.26. Coupling and cross-talk capacitances in a typical sample.
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In order to get a constant charge gain for the electrometer, one has to ensure that the single
electron transistor is kept at a constant working point. For realizing such a condition, one has
to compensate all external influences on the electrometer island charge with the electrometer
gate voltage V. This is obtained by placing the electrometer circuit inside a feedback loop

ensuring a constant charge for the electrometer island (grayed circuit in top of Fig. 2.25).

Principles of the feedback measurement

Changes of the electrometer island charge (due to a cumulated action of the variation
of the box island charge and of the parasitic cross-talk charge C,U) are detected by the
electrometer output voltage V;,,,. This voltage is locked on the constant reference voltage V;
chosen to maximize the electrometer charge gain (OV,;,/0qpor ). The error signal V,;,, — V1 is
cancelled by applying a negative feedback on the voltage V. This feedback signal contains the

information of the excess charge of the box charge that has to be extracted.

Determination of the box excess charge.

The box island staircase is obtained from the curve V(U) by cancelling the parasitic in-
fluence caused by the cross-talk capacitance. In practice one has to subtract a linear term
which equals C,.U/Cy. (see Fig. 2.27) in order to get horizontal plateaus between steps in the

Coulomb staircase.

Figure 2.27. Typicals sawtooth-shaped error signal U (V') obtained during feedback operation of
the single Cooper pair box. The average slope is due to the cross-talk influence that need to be
subtracted. A transition between two charge states for the island lead to a voltage shift AU.
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Appendix 2—D
Determination of the even-odd free energy of the
superconducting box

An estimate of the even-odd free energy A (H,T) can be obtained by measuring the staircase
assymetry, provided that A (H,T) is reduced by the finite magnetic fied to a value below the
charging energy E.. In such a situation, the 2e steps splits into two steps corresponding of the
sequential entrance of quasiparticles in the island. If one note L and S the respective lengths

of long and short steps (see Fig 2.28 on next page) then, one has

AHT) L-S8
E. L+S

(2.45)

The method is explained with more details in [1].
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Figure 2.28. Left: Derivative of the average excess charge in the superconducting box
with respect to the gate charge number n. for increasing magnetic field. Experimental
curves have been shifted by an amount proportional to the applied field. The top curve
corresponds to an applied field of 0.1 T for which the island is in the normal state.

Right: Schematics of the energy bands and corresponding Coulomb staircase for 3 typical
cases (from bottom to top: A>E., A<Ec and A=0). Arrows show the curve for which the

corresponding situation applies.
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Chapter 3

Quantum coherence in a small
superconducting array

Introduction

The experiments reported in the previous chapter show that the ground state of the super-
conducting box circuit is a coherent superposition of two charge states. Since the measurement
of the average charge in the island is performed at thermal equilibrium, it cannot lead to the
determination of the energy and of the island charge of an individual given excited state. We
have only shown that the average charge in the island is in agreement with the thermal av-
erage prediction. The aim of the experiment discussed in this chapter is to perform the full
spectroscopy of the quantum states of a simple single Cooper pair device. Unlike the super-
conducting box, the proposed experiment follow a method that have been used to characterize
the superconducting transistor [9]. It consists of measuring the maximum supercurrent that
can flow through the circuit. Even though a transport property is now probed, it is still a
characteristic of the quantum state of the circuit. We present preliminary experimental results
on a circuit in which the energy and the level-width of the first excited state can be obtained
from the resonant reduction of the critical current in presence of microwaves. The level-width

of the first excited state provides in this system a direct measurement of the decoherence rate
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of a pure charge state due to the coupling with the electromagnetic environment of the circuit.

3.1 The “self-dual” circuit

The simple Josephson array that we have considered consists of two superconducting tran-
sistors in parallel, with the two islands coupled by a junction (see Fig. 3.1). It has two islands,
controlled by two gate voltages, and two superconducting loops, which can enclose same mag-
netic fluxes when a magnetic field is applied. It is called “self-dual circuit” because of this
peculiar topology (two islands embedded in two loops) which provides a symmetric depen-
dence upon charge and flux conjugate variables. Indeed, it is the simplest one in which the
competition between 2e charge quantization and ®, flux quantization effects can be investi-
gated. Lafarge et al. [1] have first calculated the spectrum of this circuit and shown that the

energy bands have a similar dependence with respect to both flux and gate charge variables.

3.1.1 Circuit parameters

We suppose that the four external Josephson junctions have the same Josephson coupling
energy F; and the same capacitance C. The junction parameters are adjusted such that E;
is smaller than the charging energy E. = ¢*/2C. The central Josephson junction can have a
different area, and hence a different capacitance C' = rC. Since all the junctions of a given
device have their insulating layers fabricated simultaneously, they have similar oxide layer
thickness (see Chapter 6, Appendix 6-E). Therefore the Josephson coupling Ez, of the central
junction is not an independent parameter, but is related to £/; and to the geometric area ratio

r through the relation:

E,_C_
E;, C

Both island charges and loop fluxes are independently controlled respectively by the two gate

r

, (3.1)

voltages U; and Us,, and by the applied magnetic flux ® through the two symmetric loops.
The three independently controlled parameters are therefore:

e the two gate charges (expressed in number of induced Cooper pairs) noted n, =
Cy1U1/2e and ngy = Cyols/2e. It is convenient to introduce the sum Ny = £ (ng1 + ngs) and
the difference dng = 1 (ng1 — ngo) of these two variables.

e the magnetic flux ® through each loop. Its dimensionless reduced value is « = ®/®y.
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Figure 3.1. Schematic diagram of the sel f-dual circuit. Small Josephson junctions are

represented by crossed boxes. The circuit has two loops through which a magnetic flux

@ can be applied, two islands polarized by two gate charges Ng and Ng)- Energy bands

are calculated as a function of the global phase difference 9.
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The issue is to calculate the energy spectrum of the circuit as a function of the superconducting

phase 6 across the circuit.

3.1.2 Quantum description of the circuit

We perform a similar analysis as done for the superconducting box (section 2.1). Since our
system is a two-island device, the relevant Hilbert space that act as the state basis is given by

the tensorial product |ny,ns) = |nq) ® |ng) of each island charge states.

3.1.3 The electrostatic Hamiltonian H,
The electrostatic Hamiltonian is diagonal in the charge basis and writes:
Hel = Z Enl,ng ‘nlan2> <?’I,1,77,2‘ 7A (32)
ni,n2
where E,, ,, is the electrostatic energy of a charge configuration (n;,n). The expression
of this latter energy is obtained by inverting the capacitance matrix Cj [2]. It is a quadratic

function of the gate offset charges ng; and ngo:

2r
r+1

T + 2 ) 2
By ne = E m [(nl —ng1)” + (ng — ngo) } + (

) (1 — ng1) (no — nga)| . (3.3)

3.1.4 The Josephson Hamiltonian

The Josephson Hamiltonian H; couples charge states which differ by one Cooper pair passed
through one of the junctions of the circuit. Its expression in absence of applied magnetic field

writes:

~

E i i6
H, = —7‘] Z [exp (i;) |ny &+ 1,n9) (n1, na| + exp (ZF§> |n1, ne £ 1) (ny, no

ni,n2

—r|ny — 1,ny+ 1) (ny, no| + h.c] . A (3.4)

where § is the operator associated to the superconducting phase difference across the circuit.
In presence of a magnetic field, the different matrix elements acquire extra phase factors of the
form exp (ip,,), where ¢, is the phase of junction of index k such that the phase accumulated

around each loop is equal to: a = ¢/¢,

3.1.5 Effective Hamiltonian in a restricted charge state basis

As in the case of the superconducting box Hamiltonian, we restrict the gate charge numbers
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ng and ngo inside the interval [0,1]. In the case E; < E., we have seen in previous chapter
(Fig. 2.3), that quantum fluctuations are limited to two neighboring charge states. There-
fore the restriction of the Hilbert space to the subspace spanned by the four charge states:
|0,0),]0,1),]1,0),]1,1) is sufficient to determine the four lowest energy states.

We assume then that our experiment will provide a low impedance environment such that
the phase difference 6 is a good quantum number and becomes a simple parameter in the
Hamiltonian. In this restricted basis, at zero magnetic field the total Hamiltonian H = H+H;
has then the following matrix form:

EOO —ZEJ/2 —EEJ/2 0

H— _EEJ/2 E01 —TEJ/2 —ZEJ/2 (3 5)
o —ZEJ/2 —TEJ/2 E10 _EEJ/2 ’ '
0 —EEJ/Q _ZEJ/2 E11

where z = exp (i6/2). The eigenstates and the eigenenergies can be obtained by performing
a direct numerical diagonalization. The supercurrent carried by a given eigenstate ¢ is then

obtained from the Hamilton equation:

1 0E(9)
T

Although these numerical calculations do determine the supercurrent carried by the different

(3.6)

eigenstates, they do not provide a satisfactory understanding of the parameters which control
its amplitude. A better physical insight in the band structure is obtained from an analogy

with a system of coupled spins.
3.1.6 Effective spin Hamiltonian

As in the case of the superconducting box, it is convenient to introduce fictitious spins1/2.
In the restricted charge state basis, we associate two pseudo-spins 57 and S5 to the islands 1

and 2 respectively (see Fig 3.2). The charge operators are obtained from the respective Pauli

matrices 0,; and o, by a simple translation:

ni = (0.1+1)/2 (3.7)

We now introduce the total spin S = & + 5. The expression of both Josephson and

Hamiltonians can be expressed as a function of the spin operators:
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Figure 3.2: Sel f-dual circuit in a restricted space. Each island (grayed areas) behaves as
an effective spin 1/2. Eigenstates of the system will be indexed as a function of the

quantum state of the sum S of the two spins which represents the state of the "macro-
1sland" (dashed area).

AE(ng1=ngz=e)

1.=0

Antisymmetric state

h V0 Symmetric state

>0

Figure 3.3. Energy bands of the ground state and the first excited state for gate charges
equal to e and zero magnetic field, as a function of the phase difference 8. The critical
current of the circuit in a given state is proportional to the mazximum slope of the
associated energy band. The ground state correspond to a symetric state for the total spin
S whereas the first excited state with zero critical current is antisymmetric. In the strong
damping limit, the state can be modeled by a classical particle at the bottom of the
washboard potential formed by the fundamental band. The energy difference AE to the
first excited state is well defined and a photon of frequency v=E,/h can induce an

interband transitions.
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r 4dn
H, = 2E.(1-2N,)S,+—E.S? IE,. (09, — 015 .
1 ( Q)S +1—|—7" SZ+1—|—7" (0'2 0'1) (38)
HJ = —2EJCOSgSz—EJg (82—1—S22) (39)

The eigenstates of the total spin S provide a better basis to discuss the band structure.
3.1.6.a The totally symmetric case

The above expression has a simple form in the case of a symmetric polarization: ng = ngo
(i.e. for dn, = 0) and zero magnetic frustration (i.e. o = 0). The total Hamiltonian can
be expressed as a function of the total spin operators only. The total spin S becomes thus
a good quantum number, and the diagonalization can be done separately in the sub-space
S = 0, which contains the single state |S = 0,5, = 0) and in the sub-space S = 1, spanned
by the three states |S = 1,5, = 0,41) . The sub-matrix representing the Hamiltonian in each
of these sub-spaces is obtained by applying the Wigner-Eckart theorem. This theorem states
that all the operators which are transformed in the same way in a rotation are proportional in
each subspace. In the particular subspace S = 0, all spin terms vanish. The state |S = 0,0) is
thus an eigenstate with an energy independent of the phase 6. Therefore, this state |S = 0,0)
cannot sustain a supercurrent (see Figs. 3.2 and 3.3). One can give a simple physical in-
terpretation for that property: the effective Josephson coupling between the circuit elec-
trodes is zero in this state because it is mediated through an antisymmetric combination
|S=0,0) = % (|1,0) —10,1)) of the two equivalent macro-island states, which contribute
with the same amplitude and therefore cancel. In the symmetric S = 1 subspace, the Hamil-
tonian reduces to the Hamiltonian of a spin in a magnetic field, lying in the xzz plane, and
subject to a quadrupolar perturbation proportional to S?. The three corresponding energy
bands are then obtained by solving analytically the eigenvalue equation.
3.1.6.b. Model of an Heisenberg Hamiltonian

If one now examines closely the spin analogy in the particular case of a symmetric charge

and flux frustration, (i.e. : N, = 1

5, dng = 0, o = ) then one can show that the total

Hamiltonian rewrites:

H = H;+ Hgy
T

_ 2 T a2 1 Q2
_1Hﬂ@+&ﬁs 1-57) (3.10)
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If one chooses a particular set of parameters such that:

r=1, FE.=F}, (3.11)
one has the dramatic simplification :
E. — —
H=— (S —1) =E.5.5 . (3.12)

The total Hamiltonian takes then the form of an Heisenberg-like antiferromagnetic Hamil-
tonian for the two pseudo-spin 1/2.
3.1.6.c. Generalization to Josephson arrays

One can therefore easily see that the result obtained in the previous section, remains valid
for more complex circuits such as Josephson arrays formed by a series of three-junction loops.
Under the same set of “frustrating” parameters, such circuits are then good candidates for
modelling Heisenberg triangular spin ladders [5] since by generalizing the previous result, we

found that they obey to the following Hamiltonian:

— —
H=E) S.5 |,
(i.9)

where the symbol (i, j) denotes the indexes of neighboring islands linked by a Josephson

junction.

3.2 Principle of the experiment

3.2.1 Measurement of the switching current

As introduced in previous chapter (page 111), such circuits behaves as an effective Josephson
junction which parameters are tuned by the gate charges and optionally by the magnetic
fluxes in the loops. Thus the dynamics of the circuit is similar as those of a single Josephson
junction. We operate the circuit in a current-biased mode. The state of the effective Josephson
junction as a function of the phase ¢ across the junction can be represented as a particle
trapped in a dashboard potential [6]. The current forced through the junction is equivalent
to an increase in the average slope (See fig. 3.4). When the current exceeds a certain value

called “switching current”, the particle runs away down the tilted potential. According to the
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Figure 3.4: The dynamics of the current-biased circuit is analogous to a particle in a tilted
washboard potential. The tilt is proportional to the bias current I. Left: For weak bias currents,
the particle is trapped in the bottom of the well. Center : when the potential is tilted over a
critical value corresponding to the so-called switching current I, thermal fluctuations make the
particle escape from the well. A phase drift is then observed leading to a finite voltage across
the circuit. Right: For a bias current equalling the critical current Iy, no metastable minimum
is found. With an electromagnetic environment providing a large damping limit, fluctuations
of phase are reduced and I is close to I.

Josephson equation: %85 /Ot =V, a phase shift leads to a finite voltage across the circuit.
In the high-damping limit, phase fluctuations of the particle in the bottom of the well are
damped such that the switching current is close to the critical current (i.e. the highest current

for which no metastable minima in the tilted potential are found).

3.2.2 Resonant suppression of the switching current

We have seen in 3.1.6.a that, for a given set of parameters, the first excited state has no
phase dependence thus leading to a zero critical current. Actually the large difference between
the critical current of the ground state and an excited state is a generic feature which persists
for a wide range of values of N, and dn,. The operating principle of the experiment is to use
this difference to probe the level spectrum. Applying a small radio-frequency component to
one of the gate charges can indeed induce a transition from the ground state to an excited
state (see Fig. 3.3). If this state cannot sustain a large enough supercurrent, such a transition
results in a “switching event” to the quasiparticle branch unless the relaxation to the ground-
state is too fast (see Fig. 3.5). The proposed experiment thus consists in finding a resonant

suppression of the switching current. The Figure 3.6 shows the expected dependence of the
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Figure3.5. Sketch of the expected I-V characteristics of the "sel f-dual" circuit.

left: in the symmetric ground state, a finite switching current is observed.
right: in the antisymmetric excited state, the energy band is phase independent and no

supercurrent should there fore be observed.
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Figure 3.6. Expected dependence of the switching current Is for ngi=ng=e, ¢=0 as a
function of the microwave frequency v applied on the gate electrode. The ground state

corresponds to the symmetric state with a finite switching current. The switching current
1s suppressed when photons emitted by the gate induce a transition to the first excited
state. The width Avq of this resonance provides an estimate of the life-time of this

excited state.
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switching current at the best working points defined by N, = 1/2 (mod 1), dn, = 0 and a=0
(mod 1). The switching current is completely suppressed when the microwave signal on the

gate induces a transition to the first excited state.

3.2.3 Resonance linewidth

Like in the superconducting box, the life-time of an excited state is limited by the cou-
pling to the dissipative electromagnetic environment. The transition between the two states
of the self-dual circuit that we consider, has however the peculiarity to be insensitive to the
electromagnetic environment, provided that the four external junctions are exactly balanced.
This decoupling effect is due to the fact that the transfer of a Cooper pair through the cen-
tral junction does not result in a charge transfer in the external circuit. The transition is in
some sense ”orthogonal” to the environmental degrees of freedom. In other words the anti-
symmetric quantum state % (|1,0) — 10, 1)) is expected to decay relatively slowly. In the case
of imperfectly balanced circuits, the linewidth is of order of (AC/C)? E;R/ Ry, where AC/C
is the unbalance factor and R the effective environment impedance at the resonance frequency.
Other effects could however contribute to the experimental linewidth. In particular, the fluc-
tuations of the phase across the whole circuit due to the imperfect phase-bias could induce a

broadening of the transition whose frequency depends on the phase (see Fig. 3.3).

3.3 Dependence of the critical current on the gate
charges

The proposed experiment requires to place the circuit in the vicinity of the best working
points (white dots in Fig. 3.8). The location of these points can be deduced from the analysis of
the variations of the critical current I, (ng, nyo) with the gate charges. A plot of I, (ng, ng2)is
given in Fig. 3.9 for the set of parameters E; = E./10. It displays sharp wedges that can
be qualitatively understood by noticing that our circuit is equivalent, from the electrostatic
point of view, to another well-known two-island circuit, the three junction “single electron
pump” [3] (see Fig. 3.7). The electrostatic stability diagram of the pump configurations in
the (ng1,n42) plane consists of hexagonal cells whose boundaries correspond to the equality
condition between the electrostatic energies of two neighboring charge states [4]. In the case

where E; and E’; are smaller than F., the critical current is expected to be large only in the
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Figure 3.7. Schematics of equivalent capacitance arrays for the electrostatic description of

the sel f-dual circuit.

Top: Self-dual circuit for which all junctions have been replaced by their effective
capacitances. Lead extremities are grounded.

Middle: equivalent representation of the circuit obtained by splitting the grounded leads.
Bottom: equivalent representation obtained by simplifying the above circuit. It corresponds tc
the electrostatic representation of a 3-junction pump.
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Figure 3.8. Stability diagram of the island charge states (n1,n2) as a function of the gate charges,
obtained by minimizing the electrostatic energy, for the specific case C'=2C. The hexagonal cell

boundaries delimit two neighboring charge states with degenerate charging energies. The domain
for which the critical current is appreciable forms a checkered pattern (gray zones). The

resonance experiment is best per formed in the vicinity of white dots.

Figure 3.9. Critical current of the sel f-dual circuit as a function of the two gate charges numbers
Ngy and ng,. It has been computed in the case of a small Josephson coupling equal to one tenth of
the charging energy. The critical current is appreciable along the hexagonal cell boundaries and is

maximum at the triple points. 141
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vicinity of the cell boundaries, and to be maximum at the triple points of the hexagonal tiling.

This qualitative prediction is confirmed by the numerical calculations shown in Fig. 3.9.

3.4 Preliminary experimental results

The experimental set-up implementing the experiment is shown in Fig. 3.10, together with
a micrograph of a typical sample (Fig. 3.11). The design of the RC electromagnetic environ-
ment has been optimized for the measurement of the switching current (see chapter 6, section
6.5.5). We have obtained with this high damping design a ratio between the measured switch-
ing current and the estimated maximum critical current higher than 80%, which proves that
the phase-bias approximation is a good approximation [7]. In this regime, the variations of
the switching current closely reproduce those of the critical current. However it remains a
stochastic variable characterized by a switching probability. An example of I — V' character-
istics with a large switching current is shown in Fig 3.12. Although we could not yet observe
the predicted resonance, we were able to prove that the switching current measurement can

be immune to residual quasiparticles.

3.4.1 “Odd/even” states

As mentioned in the previous chapter, many superconducting box experiments failed be-
cause of the “poisoning” by quasiparticles which give access to charge states with an odd
number of extra electrons in the island. The box experiment is very sensitive to such “odd”
charge states because it is a quasi-static experiment. The experiment discussed in this chapter
is also sensitive to these “odd”-states, but unlike the box experiment, measuring the switch-
ing current is a dynamic measurement which allows to probe the circuit over a shorter and

tunable time-scale.

3.4.2 Measurement of the life-time of the odd/even charge states

3.4.2.a. switching current statistics

We have measured the switching histograms of the circuit when the bias current is ramped
at a constant ramp rate dI/dt. For a give gate charge number, we commonly observed a
double bumped histogram, as shown in the top panel of Fig. 3.15, that we attribute to the

separate switching of odd and even states. When we vary the gate charge number ng, we
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Figure 3.10. Schematics of the experimental set-up of a current biased self-dual circuit
with a controlled electromagnetic environment. On-chip capacitances C and resistances
Rg close to the Josephson junctions place the circuit in the high damping limit. Gate
electrodes are buried under a shielding ground plane. One of them irradiates microwaves
on the circuit in order to induce interband transitions. Numbered dots refer to the

connection in the sample holder already shown in Fig. 2.25.

Figure 3.11. Scanning electron micrograph of a self-dual circuit fabricated using the
multilayer technique described in part 6.5. It corresponds to the grayed frame in the set-
up diagram shown above. It is composed of three conductive layers : the first gold layer
implements the gate electrodes (dark fingers on top and bottom of the picture). The
second gold circuitry layer separated from the bottom one by half-micron thick
insulating silicon nitride layer acts for the bias serial resistances Rs (lateral fingers)
for one part and shields the two gate lines (bright areas at top and bottom of the
picture) for the other part. The top layer containing the Josephson junctions is
fabricated by e-beam lithography and is directly connected on the second gold layer. It is
aligned over the gate electrodes (see fabrication details in Chapter 6).
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Figure 3.12. Experimental I-V characteristic of the self-dual circuit, measured at 20 mK.
The circuit switches to the finite voltage branch at the switching current Ig, which has an

average value reaching 80% of the Ambegaokar-Baratoff prediction for the critical current.
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Figure 3.13. Measured switching current distributions as a function of the gate charge number
ng1, for dif ferent ramp rates.

Top panel show a density plot performed for the lowest ramp rate (di/dt=10"TA/s), dark areas
correspond to the highest probability of switching. One observes two interlaced current bands

which are both 2e-periodic. One is associated to charge states contaminated with a single
quasiparticle while the other is free from contamination. For these low frequency sweeps, the

circuit prefers to switch for the lowest current available whatever the band. As we increase the
sweep frequency, the probability of switching continuously evolves (middle panel, medium rate

di/dt=10-6A/s) and finally favors one of the current bands, probably the even state band (bottom
panel).
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could observe two interlaced 2e-periodic current bands, each one being shifted by e (see
Fig. 3.13). Lafarge et al. [8] have also observed such an even/odd dependence and double
bumped histograms for the switching current in same circuits but its dependence on the ramp
rate was not studied.

We now show how a simple dynamic model can reproduced the evolution of the switching
histogram when the ramp rate dI /dt is varied.
3.4.2.b. interpretation using a phenomenological dynamic model

We assume that the island can be found in an even state a with probability p,, and in
an odd state b with probability p,. These two states have different lifetimes 7, and 73, and
different switching rates I', and I', which depend on the bias-current I. The total switching
rate is I' = ['yp, + Tppy.

T a
b < Tb>< ’Ca >
-t
a .
7 T,
__1 __1
T | T,
beo>| + T,
U

Figure 3.14. Top: time evolution of the island states. The system hops between state a and
state b.

Bottom: Dynamic model for the switching. One state can decay in two ways: either by hopping
to the other state, or by switching to the finite voltage branch.

In a given state, the system can evolve either by hopping to the other state or by switching.

The evolution of the probabilities p, and p, during a bias-current sweep () is then governed
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by the equations (see Fig. 3.14):

dpa Do Pa
=———=—T,(I(t)) pa
B, (1)
(3.13)
dpb Py Pa
— =—— 4= =T, (I(t
DL (1)
We choose for the switching rates an Arrhenius-like law:
[ (E) = Ae” (3.14)

in which the exponent B increases with the bias-current. As a first order approximation,
we assume that the exponent B depends linearly on the current /. Note that the switching
process is an out-of-equilibrium process more complex than the thermally activated escape
out of a potential well. Within this phenomenological approach, the switching rates in the

two states a and b take the following form:

P (1) = T exp [
(3.15)

Ty (1) = I exp [Aﬂ
Such an exponential dependence of the switching rate with the bias-current has been observed
in small Josephson junctions [7]. We have solved these equations numerically using the above
expressions. Switching histograms obtained by solving the differential equations (Eq. 3.13)
are shown in the bottom panel of Fig. 3.15. The model reproduces well the evolution of the
histogram shape with the ramp rate. At low ramp rate, the system has time to explore the two
states during the current raise time: the switching occurs in the lowest switching current band,
leading to a single bump histogram. The global pattern is then e-periodic At large ramp rates,
the system does not have time to hop to another state during the current rise-time. Therefore
the current probe sees a “frozen system”; the histograms becomes sharp (Fig. 3.15 top) and
their relative weights reproduce the ratio of population p,/p,. This is further confirmed in
the Fig. 3.13 bottom panel: the switching mainly occurs in the most populated band, which
is expected to correspond to the even state. The overall agreement between the measured
histograms and the calculated ones using our simple model gives confidence in the two state
hypothesis. We can deduce from this comparison the average life-time 7, which equal about

3 ms, and the population ratio p,/p, = 1.3. We attribute the global shift of the measured
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histograms towards larger currents when the ramp rate is increased, to the finite bandwidth
of the biasing and measuring circuitry. Although the present experiment is still plagued with
quasiparticles, measuring the switching current with a large enough ramp rate allows to get
rid of this spurious effect.

One has to notice that such a “quasiparticle poisoning” at low temperature has been also
reported for the superconducting transistor as reported by Joyez et al. [9]. However they did
not observe such two-bumped histograms, probably because of the large difference between

odd and even state switching currents.

3.4.3 Effect of the microwave irradiation

We always have observed a reduction of the switching current when a sufficiently large
microwave signal was applied onto one gate. At higher levels, we have observed Shapiro
steps on the I-V characteristic. However, we could not observe a resonant suppression of the
switching current because the transition frequency was higher than the microwave line cut-off
frequency.

Since this work has been performed, a group at Stony Brook [10] has observed such in-
terband transitions in the superconducting transistor. Using a similar technique based on the
reduction of the critical current, they have measured the band gap for that system and found

it in good agreement with the theoretical prediction.
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Figure 3.15. Top: Experimental histograms of the switching current I measured at 20 mK for

increasing ramp rates. the histograms were measured for the gate charge corresponding to the

vertical line in fig. 3.13.

Bottom: Corresponding switching currents calculated with the phenomenological dynamic

model discussed in the text.
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Conclusion

The self-dual circuit is a promising candidate for a macroscopic quantum coherence type
experiment. In particular, we have found that the switching current measurement in this
circuit is more immune to spurious quasiparticles than the island charge measurement in the
superconducting box. By using samples with a suitable RC environment, and by applying
large bias current ramp-rates, we could measure the switching current in the quasiparticle-free

lowest energy band.
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Figure 4.1. Top: schematics of a normal-metal tunnel junction in series with an impedance
Z (w). The whole circuit is voltage biased. In the high impedance regime, the conductance
(g—{,)is reduced at low voltages compared to the normal tunnel conductance R}l. This effect is
known as the “environmental Coulomb blockade of tunneling”.

Bottom: schematics of a Josephson junction in series with an impedance Z (w). The whole
circuit s phase-biased. The issue of this chapter is to determine how the current-phase rela-

tion of the supercurrent I (6) is affected by Z (w) compared to the bare junction dependence
(Ej/q)o) sin 6.



Chapter 4

Environmental Coulomb blockade of
the Josephson effect

Introduction

The theory of single electron tunneling [1] shows that the conductance of a small normal-
metal tunnel junction is not a property of the junction itself, but depends also on the electro-
magnetic environment in which the junction is embedded. In particular, if one considers an
opaque tunnel junction (i.e. Ry > h/e* = Rg), a large reduction of the conductance at low
voltages is observed for an electromagnetic environment whose impedance Z(w) is large com-
pared to the resistance quantum over a sufficiently wide frequency range. This phenomenon is
known as the “environmental Coulomb blockade” of single electron tunneling (see Fig. 4.1, top
panel). One can wonder in a similar way whether the properties of a small Josephson junction
(z.e. a small junction with superconducting electrodes) are affected by the electromagnetic
environment of the junction. More precisely, the issue is to calculate the supercurrent flow
through a Josephson junction placed in an arbitrary electromagnetic environment: does an
“environmental Coulomb blockade of the Josephson effect” exist?

To answer this question, one has to consider the whole electrical circuit, which consists

of the Josephson junction and its electromagnetic environment, as a quantum system and
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determine its eigenstates. The supercurrent that circulates through the junction and other

measurable quantities will be then deduced from the eigenstate energies.

4.1 Quantum description of the circuit

We first explain how the Hamiltonian formalism can be applied to such circuits.

4.1.1 Quantum representation of a Josephson junction

The Josephson junction itself is modelled as a pure Josephson element (conventionally

represented in diagrams by a cross, see Fig. 4.2, right panel) in parallel with the capacitance

C formed by the electrodes facing each other at the junction.

&
X

e

Figure 4.2. Left: sketch a Josephson junction. Two superconducting electrodes are separated
by a thin insulating layer (~ 1 nm) through which Cooper pairs tunnel.
Right: equivalent dipole for the Josephson junction. It is modeled as a pure Josephson ele-

ment (cross) in parallel with a capacitance C. FEach component has it own degree of freedom
(respectively referred as Q; and Q¢ ).

The total charge having passed through the device is thus the sum of two charges:
e the electrostatic charge ()¢ on the capacitor plates.
e the charge () ; passed through the junction. This charge can be written as () ;=-2en,
where n is the number of Cooper pairs that have tunneled through the junction.
There is a fundamental difference between these two charges. The charge Q¢ is a continuous
variable which is associated to the displacement of the electron fluid with respect to the ion
lattice. The charge @); is, on the contrary, a discrete variable, because discrete number

of charge can be positioned virtually inside the junction. One associates to the number of
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transferred Cooper pairs n a quantum operator N whose eigenvectors |n) verifies:
N|n) =nln). (4.1)
4.1.2 The Josephson Hamiltonian

We suppose here that the charging energy of the junction capacitance E. = €?/2C is much
lower the superconducting gap A so that the Josephson Hamiltonian which couples states |n)
differing by one Cooper pair (see Fig. 4.3), takes in the |n) basis the following form:

Hy = =225 (n 4 1) (ol + o) {41, (12)

where the characteristic Josephson coupling energy E; is given by the Ambegaokar-Baratoff
formula [2]:

h A
8 €2RT

Here Rr denotes the normal state tunnel resistance of the junction. Note that this Hamiltonian

J= (4.3)

is invariant under translations of |n).
EJ

1

>

4 |

Figure 4.3. Diagram of the quantum states |n) corresponding to the number of Cooper pairs
transfered through the junction. The Josephson Hamiltonian couples neighboring states.

O 0
N O
w O

Let us then introduce the set of states \(5} defined by the Fourier series of the kets |n):

Jﬂ Z ™ |n) . (4.4)

We associate to the phase § the operator § = 12 which verifies 5|6) = 6]6) . The variables
n and 6 are thus conjugate variables in the sense of Hamiltonian mechanics [5]. The operators
A and 6 obey to the commutation rule: [ﬁ, (AS} =1

Expressed in the |6) basis, the Josephson Hamiltonian is diagonal and takes its usual form:
2w
HJ:_/ dé Ejcosé |6) (6]. (4.5)
0
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This basis is well suited to calculate the evolution of the junction state when the voltage
V (t) across the junction is imposed externally. In this case, a state |§) evolves in time in the

following way:

8(t)) = ‘5(0) +2—h€ /0 t V(t’)dt’>. (4.6)

This latter expression actually provides a quantum generalization of the Josephson relation

for the evolution of the phase:

B .
= —9. 4.
%4 5 (4.7)

4.1.3 Modeling the electromagnetic environment

><J (o) —

Figure 4.4. Schematic diagram of the circuit which is considered. It consists of a pure Joseph-
son element in series with an impedance Z (w) which models the electromagnetic environment
seen from the Josephson junction.

The electromagnetic environment seen by the Josephson junction is entirely defined by the
series impedance Z(w) (Fig. 4.4). For sake of simplicity, we assume that the capacitance C
of the Josephson junction has been incorporated in the impedance. We assume here that the
impedance does not have any DC component, i.e. }JlLI(lJ Z(w) = 0, so that a supercurrent can
flow through the whole circuit. Dissipation at finite frequency, described by the real part of
the impedance is however allowed.

We use the quantum description of dissipative electrical circuits developed by Caldeira
and Leggett [4]. The idea is to treat dissipation without corrupting Hamiltonian mechanics.

For that purpose, the impedance is replaced by an infinite collection of harmonic oscillators.
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Firstly, the real part of the impedance Re Z(w) is divided into a discrete series of infinitely

thin frequency slices:

Re(Z(Ww) = Y Re(Z(mx Aw))s (ﬁ - m) , (4.8)
with Aw — O./

We then associate to each slice a single harmonic oscillator with resonance frequency

Re(Z)

Figure 4.5. Top: frequency spectrum Re|Z (w)] of the dissipative part of the electromagnetic
environment. FEach slice |w;,w; + Aw] is associated to a single LC oscillator resonating at

w = w;, which real part § /& matches the impedance Re[Z (w;)] at that frequency.

Bottom: equivalent circuit for a model of the electromagnetic environment. A quantum state
for the environment is characterized by the number of photons in each LC oscillator.

wm = mAw centered on the frequency slice (see Fig. 4.5, top panel ). An oscillator con-
sists of a parallel LC' circuit with lumped elements L,, and C,, verifying:
Wi = MAw = ————. (4.9)
L.,Cp,
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The electromagnetic environment is therefore modeled by an infinite series of LC dipoles
(see Fig. 4.5, bottom panel) and the impedance Z(w) is the sum of all the oscillator impedances

Zm(w):

ZW) =Y Zm(w). (4.10)

¢i ¢i +1

A A V N
Ll' Li—l—]

EJ
X -
Ci

0=2nD/D,

Figure 4.6. Equivalent circuit for a Josephson junction embedded in an electromagnetic en-
vironment. The impedance Z (w) has been replaced by an infinite series of harmonic LC
oscillators. The phase & across the whole circuit is imposed by applying a magnetic fluz
through the loop.

That a LC circuit is generally characterized by a purely imaginary impedance should not
obscure the fact that an infinite series of these can result in a complex impedance'. By
extending the definition of the impedance to complex frequencies and taking the limit, the
expression of the impedance Z,, of a parallel LC circuit of elements L,, and C,, is given by:

—iw

Zm(w) = v.p. (m) + ﬁ [6(w +wm) + 6w —wn)]. (4.11)

The real part of Z,, is precisely located at the resonance frequency w,,. Identifying 4.8 with

1 This property is well known in the case of semi-infinite transmission lines, which have a real impedance and can be described
by an infinite ladder of LC circuits.
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the real part of 4.10, one obtains, using expression 4.11:

3 Re (Z(wm)) Aw. (4.12)

Even if this equation fixes only the real part of the impedance, the imaginary part of the
impedance is also properly reconstructed by this identification. Indeed, due to the analyticity
of Z, an equation linking the imaginary part of Z with the oscillator parameters can be
obtained using Kramers-Kronig relations. The values of the elements L,, and C,, are then
determined by the set of Equations: 4.9 and 4.12. It is often more convenient to characterize

the LC' circuit by its resonance frequency w,, and its characteristic impedance Z,, :

2 Aw
Zm =\ Lin/Cpn = —Re(Z(wm)) —. (4.13)
™ w

m

The quantum states defined by tensorial products of single oscillator eigenstates:
E) = ) [Nm) , (4.14)

(where |N,,) is an eigenstate of the oscillator m with N,, quanta), form a complete basis for
the quantum states of the environment. In this basis, the Hamiltonian of the environment
Heny is straightforwardly written in correspondence to the classical limit. It has a diagonal
form and writes as:

~9 ~

% Qr 1

env — = — = Nm - Flﬂ)m s 4.15
o= 3 (s + ) 32 (o 19

where N, is the number of excitation quanta in oscillator m and Qm and @m are respectively
the charge and the flux operators. This latter operators are related to the charge number and

phase through the relation

{ Qum = —2€ Ny
D = 2= Prn

4.1.4 Total Hamiltonian of the system

The total Hamiltonian H describing this system is the sum of the Josephson Hamiltonian
‘H; and of the Hamiltonian of the electromagnetic environment H,,,,.
A convenient basis to write the total Hamiltonian is the basis of vectors |\S) consisting of

the tensorial product of the kets of the Josephson junction |n) by the quantum states |E) of
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the environment:
|S>: |n>®|E>: |n7N17N277N/€7> (416)

In this basis |.S), the Hamiltonian of the environment H.,, is still diagonal but the Josephson
Hamiltonian H; is not because the transfer of a Cooper pair through the Josephson element
induces the transfer of a charge 2e through the electromagnetic environment.

In the basis |S), the expression 4.2 of the bare Josephson Hamiltonian is replaced by:

Ey

Hy===2>" (In+ 1) {nl & Toe + n) o+ 1| @ T, ) (4.17)

where the operator T is the operator which translates by 2e the charge passed through
the environment. As described in section 4.1.2, let us introduces the dual basis |¥) of |\S) with

respect to quantum number n:

T) = [6) @ |E) =) €™ |n)® |E). (4.18)

n

In this basis, the Hamiltonian H ; writes:

E, -+ ~
Hy= —7‘162‘5 % The + h.c. (4.19)

The translation operator can be written in the dual basis by analogy with the bare Joseph-

son Hamiltonian:
N % ~
The = exp (z’%@’) , (4.20)

where & = > @m is the total flux operator of the environment. The Josephson Hamiltonian

m
in presence of the environment rewrites as:

(4.21)

And finally, the total Hamiltonian has the following expression:

Z (2—Lk + 2—;> (4.22)

Examining this latter expression, one can express several remarks:

Ey

H = Hy o Hony = = JERE) L,

e the oscillator fluxes $m are recoupled in the Josephson Hamiltonian through a non-

linear term. Unlike for the bare Hamiltonian, the basis |\S) , composed of the tensorial product
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of single oscillator eigenstates, does not diagonalize the total Hamiltonian. A Cooper pair trans-
fer shifts the environment state, which leads to a coupling between states |.S) with neighboring
n and different environment states. (see Fig. 4.7).

e this structure of Hamiltonian is similar to many other types of Hamiltonians encoun-
tered in condensed matter physics [7]. In a more general way, our problem can be mapped on
the problem of a particle in a periodic potential interacting with a dissipative bath of harmonic
oscillators. The particular case of the restriction to two neighboring charge states, relevant for
the previously considered superconducting box problem, leads to the well-known spin-boson

Hamiltonian [8].

e the eigenvalues of the total Hamiltonian H, which depend on the external phase 6,

form energy bands that have to be calculated.

Environment states A E

N T T - —
* } Ak 4 J A & :’\ A x A

> .« K . ¥ \ >0 o /\
e  ©e ' o e o0

YT R T R T T

T Y L T
O o @ @ o

>
0 2T

Figure 4.7. Left panel: schematic diagram of the quantum states for the system {Josephson

Junction + environment}. The Josephson Hamiltonian couples states differing by one Cooper
pair transferred through the junction, as indicated by the arrows.

Right panel: sketch of the corresponding energy bands obtained in the phase space 0.
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4.2 Perturbational calculation

As a first approach, we treat the effect of the Josephson Hamiltonian in a perturbational
way by developing the translation operator T on the oscillator basis up to the second order

in the flux operators ?ﬁm:

. (28 2e—~ 1[2\° ~2 1=
At SR G N DCARE) ST e
l;:ém

The corresponding perturbational expression H ; of the Josephson Hamiltonian rewrites as:

E; 4 26—~ 1 (2 2 I
HJN—T@HZ%%%—J%) ;¢m+§;¢l¢m the  (4.24)

l;ém
According to this latter expression, one can separate the action of the operator § from
those of the operators $m and project H ; on the eigenvectors |6) . This defines a perturbational
Hamiltonian H,,+ function of the eigenvalues 0, written in the residual basis of the environment

quantum states |E) :

(V| Hs V) = (6,E|Hs16,E) = (E| Hpert () | E) , (4.25)

where

2e ~ 1 /2e\? ~2 1 ~
Hpert(é) = —EJ cos 6 + Z% Sin (6) % ¢m — 5 <%> COS (6) g ¢m + 5 IZ ¢l¢m
l;:ém
The flux operator $m of each harmonic oscillator can be expressed as a function of bosonic

creation and annihilation operators, respectively noted af, and a,,

~ Z
O = i 2’” (al, + am) (4.26)
57271 = ﬁZTm(l-f—QNm—i—alf%—afn).

Neglecting all terms containing a product of two operators, the perturbational Hamiltonian
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[hZ,,
_'LEJ_ sin 6 [Z f +am ]

(4.27]

Hpert Writes:

Hpert (8)= —E; cos 6 [1 —= (—) > (142N,)hZ,

The Hamiltonian Hy.,; couples the ground state to excited states with only one excitation

quantum in one mode.
4.2.1 First perturbational correction of the ground state energy

The diagonal part of the perturbational Hamiltonian in the basis |F) gives the energy

including corrections of order E;Z,,/Ry:

Zp
Ry
(4.28)

(E| Hpert (6) |E) = (N1, .. Npn..| Hpert (8) | N1, .., Ny, ...) = —Ejcosé {1 - 2WZ (14 2N,,)=2

The discrete sum over the oscillators can now be replaced by an integral over the frequency.

The correspondence is obtained from Eq. 4.13:

ZZ & —/ %()dw. (4.29)

Thus, the above expression for the energy writes:

*“ReZ d
(T| Hyere (6) |T) = —Ey cos § [1 - 4/ ReZ(w) | oy (w))—“’] . (4.30)
0 RK w
e For the ground state energy band, this expression reduces to:
M
ESV (8) = —E, [1 - 4—1] cos b, (4.31)
Rk
: : * dw
where M, is the average impedance defined as : M; = Re Z (w) —. (4.32)
0 w

4.2.2 Second order correction

The perturbation theory up to second order for H,.,; (6) provides the following correction

of order E%Z,,/ Rk to the energy:

Z| E‘Hpe”rt ‘E>| ) (433)
p#i
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e For the ground state energy band, the correction is:

(Lo Hpert (8) [0m)[*
BY6) = =X
= —8FZsin’ (5—/ Re Z ( );:)2
M.
= —8E%sin?6 x — (4.34)

hRy’

dw

where M, :/ ReZ (w) — (4.35)
0

w2’
The integral Ms has the dimensions of an inductance and can physically be associated to
the effective inductance of the environment “seen“ by the Josephson junction. Taking this

second order correction into account, one obtains for the ground state energy Ej (6) :

Ey(6) = Eél) (6) + ESQ) (6) =—FE; (1 - 4%) cos§ — 8E2——-sin? 6. (4.36)

K ThRg

At zero temperature, the current flowing through the junction is obtained from the ground

state energy band using the relation:

1(6) = L (a£0> (4.37)

which leads to:

2. 4.38
>, Ry TRy S (4.38)

The whole circuit behaves like an effective Josephson junction but with a modified current-

1(6) = Ly (1 — 4%> siné — 83 M

phase relation.
In particular, the critical current (i.e. the maximum supercurrent), obtained at 6 = 7, is

reduced compared to the bare Josephson junction critical current I0 = E;/® :

M

=1 (1 —4R—K> (4.39)

This reduction can be interpreted as a Coulomb blockade of the DC Josephson effect due
to the electromagnetic environment. The latter formula, calculated at the order M,/ Rk, is

quantitatively valid in the low-impedance limit defined by :
M, = Re(Z (w) — < — = . 4.40
= Rz T« T = o (4.40)
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This perturbational approach can be compared with exact numerical calculations in the
specific case of a single mode environment (see section 4 — A).

4.3 Variational calculation

The perturbational calculation shows that the electromagnetic environment modifies the
current-phase relation of a Josephson junction, but its validity is limited to low series im-

pedances. We propose here a variational approach valid for arbitrary series impedances.

4.3.1 Definition of trial functions

Let us start from the total Hamiltonian given by Expr. 4.22:

+y <np + %) hw,. (4.41)

The first term in the Hamiltonian is a many-body term which is a product of single oscillator

E 5 2e7
H = HJ + Henru = _7J {67/6 gez%(ﬁm + h.C.

displacement operators e %m . This suggests to use trial functions of the type:

[1]

E (tm, ) = Q) Dltm) 10m) | (4.42)

where |0,,) is the ground state of oscillator m and D(t,,) is the translation operator of

constant t,,, defined by its action on bosonic operators:
D (t)amD(tm) = tm + am. (4.43)

The variational ground state energy is then obtained by solving the stationarity equations:

OE (b N HE W) 0 DE s N HIE (s )
ot ot

=0. (4.44)

4.3.2 Calculation of (= (t1 tp,..)|Hs|E (t1, tm,-.))
One has to evaluate:

(2 (t, ) exp (2—;@%) 2 (b)) = [ O] D ) exp (2—7:@@7”) D(tn) [0m) . (4.45)

m

Using:

DY) Dltm) = b+ || 2 (15 + ). (4.46)
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one first gets:
2e .~ Zm 2e -
D' (t,,) exp (%z@n) D(tm) = exp <%z h2 (tr, +t )) exp (%uﬁm) : (4.47)

thus leading to:

(O \exp< Qh ) 0p) = (O] exp (Zz_he (a1n+am)> |0, ) - (4.48)

Using Glauber identity [16] : exp (cal, — a*an) = exp—3 la|? exp aal, exp —aan,

2e ~ e2Z 2rZ,
= m) = ——m) = _Tem ) 4.4

The expression (4.45) reduces to:

one finds:

- — 2m 12e hZ., .
(Z (tm, )| Hs |2 (tm,..)) = exp <_R— Z Zm> exp (? - (&, + tm)>

27
p = €Xp ( Ry Em Zm)
where p and 6 are defined as : : (4.51)

4e hZm
~ h Zm 2 tm

4.3.3 Calculation of (= (t1_ tm,..)| Heno |2 (t1, tm, ..))

The environment energy is directly reduces to:

1

(2t ) M [ ) = T R O D ) (i +5) Pt ) (052)

= Z Bt b (4.53)

4.3.4 Variational solutions

Associating Egs. 4.50 and 4.53, we obtain the average value of the total Hamiltonian:
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_ _ . 2
(E (t1 tm, )| HIE (b1, tm, ) = % Bt tm — E, exp <—R—K ; Zm> X

2e hZ
S+ =) \/—==(t, +tm)|(4.54
cos +h§ 2(m—|—)(5)
Z fwmty tm — E,pcos[6 + 0]. (4.55)
The variational equations 4.44 lead to:
tr =tm (tm is a real variable)
(4.56)

Bt = —E, (31/222 ) exp (~ 22 5, 22 ) sin (6 + 4 32, /25240 ).

Using Eq. 4.51, we find:

2 hZ,
Vm  integer, hwomtm = —E, (Ee Z 5 ) psin (6 +0) . (4.57)

By summing over m, one finally obtains the self-consistency equation obeyed by 6 :

_ 87TE <Z . )psm (6+0). (4.58)

Passing to the limit Aw — 0 using the transformation given in 4.29, one obtains :

0 =—ksin (6 +0)
with

16E % RelZ(w 16E
K= hRI‘(’p(/O RelZ)] [fg( Hdw) = 77 Maexp (—4%),

where M; and Ms are defined as in Egs. 4.32 and 4.35.

(4.59)

The fundamental energy band Ej (6) is finally obtained by rewriting the energy given by

expression 4.54:

M SE?M. M
Eo(§) = —E,exp [ —4=2 ) cos (6 +60) + —Z2exp [ —8=L ) sin2(6+6).  (4.60)
RK hRK RK

where 6 satisfies the self-consistent equation (4.59).
4.3.5 Comparison with the perturbational theory
The energy band Ej () has a similar structure as obtained in the perturbational case.

However the expression 4.60 differs from the perturbational result 4.36:

e The renormalization factors are now exponential terms containing all powers of g—ﬁ.
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e The phase arguments are now given by the sum (6 + 6 (6)) in place of é. Since 6 (§) is
a non-linear function of §, the current-phase relation now contains all harmonics in 6.
More precisely, one can check that the perturbational approach corresponds to a limit case
of the variational calculation, for a low impedance environment.
In this limit, both integrals M; and J Ms are small compared to the “superconducting“

resistance quantum h/ (2e)* = Ry /4 :

{ M, < Ry /4

%MQ < Rg/4 (4.61)

Since the parameter s is also small, the self-consistent equation (4.59) is straightforwardly

solved:
0 =—kKsiné , (4.62)

thus leading to the ground state energy:

M 8E2 M. M
Ey (6) = —FEjexp (_4R_;> cos[6 — ksind] + h;%K2 exp (—8R—;> sin® [6 — xsind]. (4.63)

We now perform an expansion of Ej (6) retaining the lowest order terms in M; and Moy:

M M 8> M
Ey(8) ~ —E; (1 - 4R—1> cos§ — E; (1 - 4R—1) ksin? 6 + —2L M, (1 - 8R—;) sin? 6

K K FLRK
M 82
~ —E; (1 - 4R—1> cosd — 2= My sin 26, (4.64)
K K

which coincides with Expression. 4.60 obtained using perturbation theory.

4.3.6 Comparison with the classical limit

It is instructive to compare the variational equations 4.59 to the equations one would obtain
at equilibrium for the same Hamiltonian 4.22, but with the operators gzﬁk replaced by classical
variables ¢y.

The Hamilton-Jacobi equations 2 . ¢ = 0 write:

Ey
Or = —471'67 sin

5+ Z - %] . (4.65)

Summing over k this latter equation leads to:

E
%@C = —SWR—IJ( sin

5+ 2—;%] (Z Lk> . (4.66)
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One thus obtains the self-consistent equation :

0 = —8m gL Legysin [6 + 0]
with : Leff = Ek Lk (467)

and: 0=)>, %gzﬁk
This equation is similar to the variational equation (Eq. 4.59) but with the
restriction p =1.
One can draw from this latter comparison several remarks:
e There is a perfect agreement between the classical and the variational treatment of
the total Hamiltonian assuming that the reduced parameter p is set to 1.
e All quantum effects in the variational treatment are thus contained in the factor
p < 1. The non-commutation of position-like and momentum-like variables leads to the factor
p in the Glauber formula .
The variational method used here appears as a semi-classical method which takes into

account single oscillator quantum correlations.

4.3.7 Solutions of the self-consistent equation

The self-consistent Equation 4.59 relating 6 to the external phase § can be numerically
solved as a function of the parameter x defined in Eq. 4.59. The value k = 1 separates two
domains for the solution 6 (6):

o r <1

The resolution of the equation for x < 1 has already been given in Eq. 4.62. In this
regime, the phase § = —ksin ¢ is proportional to k. As the parameter £ increases, the curve
0 (6) progressively deviates from a sine function. In particular, the curvature % at 0 =7
(mod. 27) increases and diverges when k reaches 1 (see Fig. 4.8, top panel). Correlatively,
the fundamental energy band, which has an harmonic dependence in the perturbational case
k < 1, develops a cusp-like maximum at 6 = 7 (see Fig. 4.8, bottom panel).

o r>1

6 (6) is no longer a continuous function. It has a saw-tooth dependence with periodic jumps

at 6 = m+ 2pm  (p integer). The ground state energy band presents cusps (see Fig. 4.8,

bottom panel) where its derivative is discontinuous. The supercurrent through the junction
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Figure 4.8. Top panel: solutions of the self consistent equation @ = —k sin(0 + 6) for different
values of the parameter k. The value k = 1 defines a threshold between a domain for which
0 (6) is a continous funtion and a domain for which 0(6) switches at 6 = m (mod 2r).

Bottom panel: reduced ground state energy E (6) /pE; for different values of the parameter k.
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is thus also a discontinuous function of § at these points.

The threshold k = 1 defines a transition point between a domain in which the supercurrent
I (6) is continuous (for k < 1), and a domain in which it is not (for x > 1). The physical
meaning of the transition will discussed in appendix 4—A, in the case of an impedance reduced

to a single LC' oscillator.

4.3.8 Expression of the supercurrent at zero temperature

At zero temperature, the expression 4.37 of the current, calculated using 4.59 and 4.60,

leads to:
E5 .
](T:()) = (}TO S (6 + 0 (6)) s (468)

M
where £ = Ejexp (—4R—1> can be interpreted as a renormalized Josephson coupling energy.
K

In the case kK < 1, the critical current is given by:

My

I.=1° —4—1. 4.69
Lo (g (4.69

Compared to the case of a bare junction, the critical current is exponentially reduced
by the flux quantum fluctuations of the environment modes. This result extends
the perturbational expansion (4.39) previously obtained. It predicts the existence of an en-
vironmental Coulomb blockade of the DC Josephson effect. This effect is the analogous for
Josephson junctions to the Coulomb blockade of the conductance for normal-metal tunnel
junctions.

In the case k > 1, the critical current is given by 61_i)r7{17 Iir—0), where Ii7—g) is given by

expression 4.68.

4.3.9 Expression of the supercurrent at finite temperature

The variational method can be readily extended at finite temperatures in the case of an
environment with a discrete spectrum. The different energy bands can then be indexed by an
integer n, and the average supercurrent is given by a Boltzmann average of the supercurrents
I,, (8) carried by the excited states n:

[(T,6) =) Pl (8) =) % <8£”> , (4.70)

n
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where the P, are normalized Boltzmann factors:

e kBT
e kB

At temperatures such that 7' < min [E; (§) — Ep (6)] /kp, the ground state contribution to the
current is dominant. At higher temperatures, the contributions of the excited states contribute
to the average current and tend to decrease it (see Fig. 4.9). Note that at a given phase§, the
signs of the currents carried by successive states can be different. This situation is reminiscent

of the permanent currents carried by single electron states in small normal metal rings [10] .

| E,
- / >

P O

Figure 4.9. Left: Boltzmann statistics P(E) at finite temperature T

Right: schematic diagram of the energy bands participating to the global supercurrent through
the Josephson junction. At finite temperatureT', the average supercurrent through the junction
results from the thermal average %0 >, P(E;)OFE; /06 of supercurrents q_%anZ- /06 associated to
each band.

4.3.10 Comparison with the renormalization group approach

We have compared our predictions with those of Hekking et al. [11] derived using a renor-
malization group (RG) approach, for a particular environment.

They consider a Josephson junction connected to a thin superconducting loop. The electro-
magnetic environment states are plasmon modes propagating along the loop. The correspond-

ing impedance spectrum consists of a series of Dirac peaks at harmonics of the fundamental
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resonance frequency wq with weight R/wy, up to a cut-off frequency Q2 (see Fig. 4.10).

tReZ

Figure 4.10. Real part of the environment impedance considered by Hekking et al. It consists of
a series of Dirac peaks, beginning at frequency wg up to a cut-off frequency Q2 . The average
effective value is Ry /4g.

They find that the junction still behaves as an effective Josephson junction. However,
its associated Josephson energy E; is renormalized by the electromagnetic environment with
respect to the bare energy EY. Two renormalization regimes occur depending on the value of

the dimensionless parameter g = Ry /4R with respect to 1:

o g<l1
E;=E° (ﬂ) ’ (4.72)
Qum
e g>1
~ 0\ g1
E;=ES (&> (4.73)
Qm

Similar results can be also derived within the framework of our variational approach as dis-
cussed in the following.

We first calculate the renormalized Josephson energy E% given by equation 4.68 in the case
of the electromagnetic environment considered by Hekking et al. By replacing Re[Z (w)] by
its average value Ry /4g, we obtain:

4 [*RelZ 4 [Sw 4
E% = ESexp (—— / de> ~ EYexp <—— / fixc/49 dw) : (4.74)
0

w Ri ), w

()= (50)
Er~Flexp|——In[—=))=E%(=—"1 . 4.75
J J p( g (wo J Qs ( )
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This result coincides with the prediction for E; in the case g <1l

If the renormalized energy E7% is larger than fwy, the expression 4.74 needs to be modified
because the low frequency oscillators do not contribute in fact to the renormalization. This
effect is similar to the “slave boson“ effect in the spin-boson problem [12]. The low frequency

cut-off wy has to be replaced in this case by E%/h. The renormalized Josephson energy E% is

then:
1
4 [ Re[Z (w)] (E* 9
E* = EYex ——/ — = v | = EY =L ) 4.76
J J P( Ry o w J Qs ( )
which leads to:
EON\ o
E% =ES (—J> : (4.77)
Qs

This result coincides with the prediction for E; obtained by Hekking et al. in the case g > 1.
Although both approaches lead to similar results, the value ¢ = 1 does not appear as a

transition point in our model.

4.4 Case of a Josephson junction coupled to a single
mode oscillator

Our predictions obtained using both perturbational and variational approaches can be
tested in a case in which an exact numerical calculation of the energy bands can be performed.
For that purpose, we have considered an electromagnetic environment consisting of a single-
mode oscillator. The system can be thus modeled as a bare Josephson junction in series with
a single LC oscillator (see Fig. 4.11, right panel).

Let us mention that this basic circuit corresponds to the well defined experimental situation
of RF-SQUIDs [13]. This circuit can represent a superconducting loop interrupted by a single
Josephson junction. The loop plays the role of an inductor with effective inductance L, while
the electrodes facing each other at the junction can be associated to an effective capacitance
C (see Fig. 4.11, left panel). The externally applied magnetic flux ®.,; provides the phase
bias, and the observed variable is the inner magnetic flux ®;,;. The loop behaves then as
a “fluxon box“ since it can store and deliver flux quanta one by one. Such an experiment

is strictly the dual equivalent of the single Cooper pair box experiment presented in
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chapter 2, the charge being replaced by it conjugate variable. Quantum effects have indeed
already been observed in RF-SQUIDs with large Josephson junctions [14] and in the case of
YBaCuO superconducting rings presenting weak links [15].

Figure 4.11. Left: schematic diagram of a phase biased Josephson junction coupled to a
single-mode oscillator.

Right: sketch of the corresponding experimental circuit which consists of a superconducting
loop interrupted by a Josephson junction. The phase bias is provided by an externally applied
magnetic flur ®Peyy. The inner flux @, differs from @ due to the superconducting screeming
current around the loop.

4.4.1 Hamiltonian description of a Josephson junction coupled to a
LC oscillator

The Hamiltonian 4.22 reduces to:

Q2 (I)Q t 27T(I)int
H(6)=—=—+""2_F;c o) 4.
(6) 20-1— 5T 7 CoS B, +6], (4.78)

where § = 27®,,; /Py is the phase bias imposed by an applied external flux ®,,;.
This Hamiltonian involves three characteristic energies:
e the bare Josephson coupling energy E;

e the inductive energy E; characterizing the energy of a fluxon ®, entering the loop:

B R
2L 8Le2
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e the charging energy FE. of the junction:
E,=— (4.80)

According to these notations, the Hamiltonian writes:

2 2
HE) = B (2) 4+ (20) — Bycos (222 4 5) (4.81)
e (I)o CI)O

Since ) and ® are conjugated variables, this Hamiltonian can be interpreted as the Hamil-
tonian of a particle with position 27®;,,;/®¢ and mass C (Pg/ 27T)2 placed in a parabolic cor-
rugated potential V (®.¢, D) (see Fig. 4.12) given by:

(I)in ? 2 (I)zn q)em
V (Peat, Pint) = EL L) —Ejcos 7 (Pint + Peat) : (4.82)
P P

This potential V (®yy, @), plotted in two different cases, together with the position of its
absolute minimum and the ground state wave function, is sketched in Fig. 4.12 for various

values of ®.y;.

4.4.2 Hamiltonian matrix elements in the harmonic oscillator basis

Expressed in the basis |n) of the harmonic oscillator, the matrix elements of the Hamiltonian

are:
1 2,
Hym (6) = (n|H(6)|m) = (n+ §)ﬁ906nm — Ej (n]cos (% + 6> |m)
0
1 E; iv(a+at)+o
= (n+ i)ﬁQoénm - (n]e + h.c.|m) , (4.83)

where 72 = 47222 \/g = 477 /Rg and a (respectively. a') are the annihilation (respectively.

creation ) operators.

Using Glauber identity [16], one finds for the unitary translation operator T

T = en(atal) _ =*/2-inat gina (4.84)

which implies for its matrix elements Tnm:

A

Tom = (n| T'|m) = e 7*/? (e e7m) . (4.85)

Each part of the bracket can be developed using a coherent state expansion [16] :
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Figure 4.12. Potential V (®,®ert) for different bias fluxes ®opy plotted for the domains

E; > Ep/2x% (top panel), and E; < Ep/27* (middle panel).

Ground state quantum

wave-functions are sketched by a gray curve whereas classical equilibrium solutions are sym-
bolized by black dots. Its dependence with the bias fluz ®.s., (thin line for large E;, thick line

for small E;) is represented in bottom panel.
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L |m> _ Z (Z’Y) ak ‘m>

k

where : : (4.86)
a*|m) = \/ (n k)v Im — k)
The element Tnm rewrites as:
Inf(m,n) k (- \n+tm—2k
- _ —1)* (i) n!m!
Ty = €477/ Fixc ( . 4.87
‘ kzo K (n— k) (m — k). (487)

The matrix elements hy,, of the reduced Hamiltonian H /i) are then given by:

1 1 es
e (1 HO) ) = -+ ) — &

o (8) = :

[Tnmei‘s + Tgme_i‘s} : (4.88)

where e is the reduced Josephson energy: FE;/h ).

4.4.3 Computational procedures

We have numerically determined the eigenstates and eigenvalues of the restriction of the
Hamiltonian to the subspace Sp of dimension D spanned by the states (|n)),_, . This
dimension D has to be chosen in order to give reliable results without leading to too time-
consuming computations.

Actually, one can evaluate the minimum dimension required to obtain a correct description
of the ground state energy band Fy (6): it is necessary that the linear combination of oscillators
states for the shifted state T'|0) is a state of the subspace Sp up to a good accuracy. As can
be seen in Fig. 4.13, the value of the modulus of T}, is negligible for values of n larger than

twice the value n; for which the modulus is maximum. Therefore one should have:
D Z 2 xmn,. (4.89)

One can obtain an estimate of n; by noting that a Cooper pair which tunnels through the
junction increases the environment energy by a quantity equal the charging energy of the
L2
TOn

junction E, = (2¢)* /2C. The maximum value for is obtained when the energy of the

oscillator state matches E.. The value of n; thus satisfies:

(m + 1) h =~ (2e) /2C . (4.90)
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Figure 4.13. Square modulus of the components

associated oscillator energies nhf)

The two relations 4.89 and 4.90 determines the minimal dimension D;,:

8t | L
Dyin = —1/ = . 4.91
m\© (4.91)
We have checked that the numerically obtained eigenenergies remained unchanged when

the dimension D was increased well above this limit.

4.4.4 Control of the results

We have checked that the numerical results obtained in the low-impedance limit are in
agreement with the perturbational results. In the case of a single mode environment, both

parameters M; and M, defined in Eqs. 4.32 and 4.35 can be exactly calculated :

M- 3,/2
(4.92)
My =35L
The expression 4.36 of the ground state energy band reads:
Eo(8) = By (6)+E (§)
2 L
with Eél) (6) = —E; (1 - R—Z E) cos &
AmL
and EP (§) = —E2— sin?s. (4.93)
hR

- 179 -



CHAPTER 4 ENVIRONMENTAL COULOMB BLOCKADE OF THE JOSEPHSON EFFECT

Similarly, a generalization of the previous perturbational calculation gives for the energy

E, (6) of the p'" excited state:

E,(8) = EY(6)+EP (6 (4.94)
2 /L
with E(V)(6) = —E; (1 — R—Z (1+2p) E) cosd
An L .
and EI(,Q) (6) = —E3% FEr sin® 6,

which leads to the reduced energy E, (6) /Y :
1
E,(6) /h = (p+ 5) —e, [1 —2mz (1 +2p)] cos b — 4dmze” sin® 6, (4.95)

where e, = Ej/h) is the reduced Josephson energy and z = \/g / Rk the reduced en-
vironment impedance. The bands have a first order correction that preserves the harmonic
dependence upon the phase and an anharmonic second order correction which does not de-
pend on the band index p. This latter expression can be directly compared to the numerical
results for a given set of environment variables. The comparison for the ground state and the
first excited state energies is shown in Fig. 4.14 in a specific case. This comparison illustrates

the good agreement obtained in the perturbational regime.

4.4.5 Comparison with the variational approach

In the case of a single mode environment, the variational prediction Eq. 4.60 for the ground

state energy reduces to:

2 L 8TE2L 4 L
Ey(6) = —Ejexp (—R—ZU5> cos (0 +6) + 77;R;J< exp (—R—Z\/5>sin2(0+6),

(4.96)

with 0 =—ksin(0+6) and k= 87};?}‘]{[/ exp (—]2%—7; é) .

We have checked that variational solutions are in good agreement with the numerical results
for k < 1 as well as for k > 1. The comparison for the ground state and the first excited state
energies is shown in Fig. 4.14 for the value k = 22. A good agreement is obtained for all values
of the parameters. Let us note however that the variational approach always predicts a zero
gap level crossing at 6 = 7/2 (mod. 7) for k > 1, whereas the exact numerical results show a

residual gap.
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Figure 4.14. Comparison of ground state and first excited state energy bands obtained us-
ing the perturbational approach (dashed lines) and numerical calculations (solid lines) in the

case of a Josephson junction with E; = 0.44h82y connected to a low impedance environment
Z/Rk = 0.07.

Figure 4.15. Comparison of ground state and first excited state energy bands obtained using
the variational method (open dots) with the numerical calculations (black curve and solid dots).
The parameters are: Ej = 1588 and Z = 4220§) = R /4, leading to k = 22.
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4.4.6 Phase transition induced by quantum fluctuations

The discussion of the variational solutions has shown that the value k = 1 separates solu-
tions € (6) with different behaviors. More precisely, the relation k = 1 determines a transition
line in the parameter space (E;/EL, E;/E.), as seen in Fig. 4.17. The solution 6 (6) of the
self-consistent equation is either continuous (for k < 1) or discontinuous (for x > 1). This
phenomenon is furthermore confirmed by the numerical calculation although the observed
transition is not as sharp. Its has a clear physical interpretation in terms of the magnetic
response of a RF-SQUID:

e For k > 1, The variations of ®,,; with the external flux ®.,; follow a discontinuous
staircase-shaped curve with jumps. A single flux quantum enters the loop when the magnetic
energy of the two configurations separated by one quantum are equal (see Fig. 4.16, top panel).
The inner flux ®;,; follows then a “Faraday staircase” function (see Fig. 4.16, middle panel),
which is the dual of the “Coulomb staircase” of the single Cooper pair box at small values
of E;/E. (see previous chapter). In this regime, the circuit behaves as a “single fluxon box
7. This perfect quantization is due to a screening supercurrent which follows a saw-tooth
function (see Fig. 4.16, bottom panel). The jumps in the screening current occur when the
current reaches the critical current. A map of iso-critical current lines (I./I°) in the parameter
space is shown in Fig. 4.18.

e For k < 1, the Faraday staircase is not as sharp as in the previous case and ®;,; is a
continuous function of ®.,;. The staircase is rounded by the quantum fluctuations of the flux
which tend to suppress the flux quantization. This rounding is analogous to the rounding of
the Coulomb staircase of the single Cooper pair box when E;/E, is of order unity. However,
the problem of the fluxon box involves three energies: E;, E. and Ej, instead of two (E;, E.)
in the single Cooper pair box. This explains why a transition between a discontinuous and
continuous inner flux ®;,; can still be obtained in the classical limit (£, — 0, thick line on
Fig. 4.17). In this limit, discontinuous solution vanishes for F; < Er/ 272 and corresponds to
the suppression of the metastable minima in the potential V (®eyy, @) (see Fig. 4.12, middle
panel). The Josephson coupling is then too weak to maintain a sufficiently high screening

current.
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Figure 4.16. Flux dependence of physical variables of the superconducting loop ground state
for both cases k > 1 (black curves) and k < 1 (gray curves)

top figure: ground state enerqy of the system E(®eyt)

middle figure: ”Faraday staircase” of the inner flux @ (Peyt)

bottom figure: superconducting screening current.
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EJ/Ec 1_2

27

flux
gquantization

. : —t——t—t EJ/EL
0 0.05 0.125 025 05 1 2 OO

Figure 4.17. Transition line representing the solutions of the equation k = 1 in the parameter
plane defined by the reduced coordinates Ej/Ey and E;/E.. The curve separates the space into
two domains: in the upper-right (k > 1) domain, the flux inside the loop is an integer number
of flur quanta; in the other (k < 1) domain, the flux inside the loop is a continuous function
of the externally applied fluz. The classical regime is obtained in the limit E;/E, — oo (top
thick line).

0.5

0.25

0.05 0.125 0.25 0.5 1 2 10O
EJE.

Figure 4.18. Map of iso-critical current lines in the parameter space (E;/Er, E;/E.). The
values indicate to the reduction factor with respect to the fully developped critical current
I = E;/®q of the bare Josephson junction. The transition line k = 1 shown in previous
figure is also indicated.
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4.4.7 FEffect of dissipation

We have investigated the effect of dissipation by reducing the quality factor of the LC
circuit. This can be done by placing a resistive shunt in parallel with the LC oscillator (see
Fig. 4.19). Firstly, we have calculated the two impedance integrals M; and Ms as functions of
the oscillator quality factor.

We have then determined the transition line = 1 in the parameter space for different values
of the shunt resistance R (see Fig. 4.20). For resistances R small?> compared to R /4 ~ 6.4 k),
the continuous inner flux area (above the surface k = 1) tends to occupy the whole parameter
space except for E;/Er < 1/ (2n?) which is the classical domain limit. We interpret this result
by the suppression of quantum fluctuations by dissipation, which tends to restore the classical

behavior of the system.

4.5 (General expression of the renormalized Josephson
energy

4.5.1 Starting from the tunneling Hamiltonian

We have assumed up to here that the superconducting gap A is much higher than the
charging energy FE., thus ensuring that the coupling Hamiltonian between superconducting
electrodes across the tunnel junctions takes its usual Josephson form (Egs. 4.2 and 4.3). This
limit is actually not always experimentally fulfilled, in particular for Aluminum electrodes for
which A is about 2 kgK, while typical values of E, are around 1 kgK. In such a case, a more
general approach starting from the tunneling Hamiltonian is required. The derivation of the
effective Hamiltonian has been done by Joyez [6] using a time-representation formalism. By
combining his result with the variational approach, we have obtained an expression of the
renormalized Josephson energy £ which extends the expression 4.68:

L 2/°°Cl_WRe [Z (@](He%)
E; = Ej— / dr K2(r) e Jo w Ik : (4.97)
0

where K is the modified Bessel function of the second kind.

2 This limit similarly involves the "superconducting” resistance quantum Ri /4 as in Egs 4.61 which set the low impedance
limit for the environment.
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|
X

Figure 4.19. Schematics of a Josephson junction coupled to a single mode oscillator with a
finite quality factor. The environment of the junction can then be modeled as a parallel RLC
circuat.

EJ/EL

Figure 4.20. Transition surface (k = 1) in the parameter space (E;/EL, E;/E., R/(Rk/4)).
For shunt resistances R small compared to Ry /4, the flur quantization is restored except in
the classical regime E;/E; < 1/272.
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In this time representation, the Cooper pair tunneling is described by a sequence of two
single electron tunneling processes, separated by a time delay 7. The time factor in the ex-
ponential: (1 + e_h%) has an interesting physical meaning: it describes the effect of the
electromagnetic environment on the two consecutive tunneling processes. One can note that
the larger this delay is, the lower the influence of the environment on the junction. Therefore,
passing two electrons successively is ”easier” than two electrons at a time.

One can check that this lattirooformula is in agreement with our calculation in the limit

A — +o0. Using the identity / dr K3 () = =, one finds:
0

* doRe[Z ()

—4
i * — B / w Ry
AI_IH_IOO Ey=FE;e 0 (4.98)

which is exactly the renormalization factor obtained in Eq. 4.68.

4.5.2 Self-consistent expression of the renormalized Josephson
energy

Finally, we propose to extend the result 4.97 in order to take into account the ”slave-
boson” effect as previously discussed in section 4.10. This is tentatively done by setting the
low frequency cut-off of the impedance integral at E%/h. This way of reasoning leads to the
general, self-consistent expression of the renormalized Josephson energy:

oo - /oo dw Re[Z (w)] <1+e,n_zi)
EY = Eﬂ% / dr K2(r) e 7 mm @l . (4.99)
0

This expression contains all previously obtained results in the appropriate limits.
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Conclusion

Using perturbational and variational approaches, we have shown that a Josephson junction
in series with an impedance behaves as an effective Josephson junction but with a different
current-phase relation. The current-phase relation is no longer sinusoidal and the critical cur-
rent is reduced compared to the bare junction critical current. In particular, a high-impedance
environment strongly reduces its value. We interpret this effect as an environmental Coulomb
blockade of the Josephson effect analogous to the blockade of the conductance observed in sin-
gle normal metal tunnel junctions. Recent calculations based on the renormalization group
agree with our interpretation. In the case of a Josephson junction in a superconducting loop
placed in a magnetic field, the comparison with exact numerical calculations confirms the
existence of a transition from a regime in which the inner flux is quantized in units of flux
quantum ®g to a regime in which it varies continuously with the applied field. The disappear-
ance of quantization is due either to weak screening currents or large quantum fluctuations.
Introducing dissipation in the system tends to suppress quantum fluctuations and therefore
to restore flux quantization.

Finally, let us mention that our prediction of an environmental Coulomb blockade of the
Josephson effect could be experimentally addressed by measuring the magnetic susceptibility
of RF-SQUIDs with adequate parameters. The direct measurement of the maximum super-
current in a current bias mode would not give the critical current but the switching current
which is a stochastic quantity smaller than the critical current [17], as discussed in previous

chapter.
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Chapter 5

Charge detection and noise level in
single electron transistors

Introduction

The appealing idea of using the charge quantization in small islands to represent logical
bits emerged at the very early stages of the development of single electronics [1]. In a sin-
gle electronics logical device, a single bit would be represented by two charge states differing
by one electron, instead of two charge states of a capacitor differing by a macroscopic num-
ber of electrons as currently implemented nowadays. Although this ultimate coding scheme
provides obvious advantages such as reduced dissipation, it suffers from serious drawbacks
which have hindered its practical realization. Firstly, tunneling is a stochastic phenomenon
and the evolution of a circuit is not fully deterministic. Secondly, the single electron charge
state which represents the bit is presently not robust, due to the intrinsic sensitivity of sin-
gle electron devices to their electromagnetic environment. In particular, island charge states
which are normally determined by the control gate voltages are also affected by variations in
the local electrostatic field. The electrostatic configuration of all trapped charges in the lattice
impurities of the substrate, or in surface impurities in the vicinity of islands, thus has a di-

rect influence on island charge states. The overall effect on an island of the extra electrostatic
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field sources is equivalent to an “offset” charge on the gate capacitor. Such a dependence of
single electron devices on offset charges actually ruins all the advantages that single electro-
nics could bring to digital electronics, at least within the framework of present day technology.
Indeed, offset charges are randomly distributed and subject to random changes in time. Even
assuming that offset charges can be compensated by applying tedious gate voltage corrections,
their unpredictably time dependence would definitely cause unrecoverable memory erasures
and calculation errors for the proposed digital circuits. More generally, offset charges which
affect all the single electron devices operated up to now appear as one of the main practical
problems hindering the development of single electronics. For instance, offset charges limit the
error-free operation time of single electron pumps or the charge sensitivity of single electron
transistors (SETs) used as electrometers. These latter devices are actually perfectly suited to
investigate the time evolution of the offset charge of a single island. The subject of this chapter
is to give a closer view of SET characterization and of their use in high-sensitivity electrome-
try. We show experimental results that provide a reliable determination of the offset charge
levels of SETs fabricated on different substrates. We discuss their origin and the localization
of the field sources. Finally, we propose a possible application of the SET to the monitoring
of the trajectory of charged particles.

5.1 The SET as an electrometer

The operating principle of the single electron transistor [3] has been previously described
(see section 1.1). The relevant property for electrometry is the sensitivity of the output signal
(the voltage or current depending on the bias mode) with respect to the charge electrostatically
induced on the island. In the following,we consider only the case of a current biased although
charge measurements using voltage-biased SETs are possible as well (an example is provided
in the article reprinted in appendix 5-D).

For a given bias current /, the voltage V' across the electrometer is periodically modulated

by the induced charge ¢', the period being one electron on the island (see Fig. 5.4):

V() = V(D) + f (M I) (5.1)

(&

I The SET is the analogous for electrometry of the dc-SQUID for magnetometry [2]. Both devices have similar periodic
response functions and provide a sub-quanta detection accuracy. This similarity is not accidental but arises from a deeper
duality principle between charge and flux (see Chapter 4).
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The bias current [ is chosen in order to maximize the voltage modulation. The gate voltage
V, is adjusted to reach a working point where the function f has a maximum slope g—g. These
two successive settings therefore ensure an optimal charge detection gain g. At this working
point (for example, the point O represented in Fig. 5.4), the output signal directly reflects
the sub-electronic variations of the charge polarized on the island, thus probing with a great
sensitivity the local electric field (see Fig. 5.2). The measurement of the excess charge in the
single electron box experiment described in chapter 2 clearly illustrates the usefulness of such
a device.

As for any other electronic device, the detection limit and the accuracy of a SET are
limited by its noise level. This noise can be separated into two components with different

physical origins:

5.1.1 Shot noise

The first source of noise is intrinsic to the device: stochastic tunneling of discrete charges
through the device results in current fluctuations, referred to “shot noise”. This noise has a
flat frequency spectrum (thus is commonly referred as a white noise). Compared to a purely
Poissonian process through a single junction, the noise level in a SET can be reduced by up to
a factor 2 due to the correlations between successive tunnel events through the two junctions
in series. These predictions have been recently experimentally confirmed by Birk et al. [4].

At the optimal working point of the SET, the characteristic time 7 of each tunnel process
is 7 =~ RyC where Ry and C' are respectively the resistance and the capacitance of the tunnel
junctions. The shot noise is thus equivalent to a white noise in the charge to be measured

with a spectral density S, satisfying:

\/g e/VHz < S; < V27 ¢/VHz, (5.2)

the maximum value being obtained for uncorrelated successive tunnel events. The shot noise,
which sets an intrinsic accuracy limit for the charge detection (see paper reprinted in Appendix

5-D), is not however the dominant noise source at low frequency.

5.1.2 Background charge noise

The second kind of noise affecting SETs is extrinsic: it arises from the stochastic motion of
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the already mentioned trapped charges. This motion induces on the island a time dependent
offset charge ¢,(t). The precise relation between the distribution of trapped charges and g, is
established in Appendix 5-B.

Hence, to be detected by the SET, a charge will have “to speak louder” in the considered
bandwidth than the background charges surrounding the SET island. We will see in the

following that this background noise exceeds the shot noise at low frequency.

5.2 Charge noise measurements

The measurement of the background charge noise of a SET electrometer is above all a deter-
mination of its sensitivity. But beyond electrometry purposes, it also provides a measurement
of the background noise level acting on the islands of any single electron device fabricated
with the same process. The noise level is thus an important specification which character-
izes a given fabrication process. Measuring the background charge noise is therefore necessary
when one decides to dramatically change the fabrication methods in order to implement new
features (see Chapter 6). More precisely, can the newly introduced substrates such as poly-
imide or silicon nitride be considered as “quiet” substrates with respect to the background

noise?

5.2.1 Measurement principles

In order to address this question, we have carried out a test experiment on a SET fabricated
on an oxidized silicon substrate covered with a plastic layer made of polyimide, using the
multilayer fabrication technique described in chapter 6.

The electrometer was first designed to measure the charge of an electron box (see Fig. 5.1).
The very long T-shaped island of typical size (10x0.1 um?) was not optimized for a low-noise
charge detection. One should rather consider this sample as a typical device used in “real
case” sub-electronic charge detection. I —V measurements were performed at low temperature
(T" = 20 mK). Each line connecting the device to the apparatus at room temperature was
carefully filtered using miniature cryogenic filters [5]. A magnetic field of about 0.15 Tesla was
applied to suppress superconductivity in the aluminum electrodes.

From the I-V curves presenting respectively zero and maximum Coulomb gap (Fig.5.3),
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2.00

Electrometer on Polyimide

Figure 5.1. AFM image of a SET electrometer deposited on a polyimide substrate. The two
bright dots are the tunnel junctions. The T-shaped island (in diagonal on the picture) probes the
charge of an electron box (not in the picture). The gate electrode is buried below the polyimide
substrate and leads to a small shadow on the resist (lower left) .

Figure 5.2. Schematic diagram of the device used in the experiment. It consists of a current
biased SET whose voltage V' is measured. The total charge induced on the island is the super-
position of the gate charge C,V, and of the so-called charge noise q,,. This charge noise can be
considered as being equivalent to a noise source V,, connected to an effective capacitance C,,.
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03 -02 -01 00 01 02 03
v(mV)

Figure 5.3. I-V characteristics of a SET electrometer fabricated on polyimide, measured at
20 mK for two gate voltages leading respectively to a zero and maximum Coulomb gap. The

dashed lines indicate the currents at which the modulation curves in the next figure have been
recorded.

Vg(mV)

Figure 5.4. Modulation curves of the SET output voltage with the gate voltage V;, at 20 mK.
The bias currents are 5, 165, 327, 500 and 590 pA from bottom to top, respectively.
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we deduce the tunnel resistance per junction (Rr = 63 k2), and the junction capacitance
(Cj = 0.8 fF). Due to the specific geometry of the gate with has its electrode buried below the
SET island, its capacitance to the island C, is relatively large (C, = 140 aF). The charging
energy of the SET is then equal to e?/2 (C, + 2C;) ~ 0.6 kK.

The total polarized charge ¢ results from the superposition of the charge noise g, (t) and

the charge of the gate capacitance C,V, (t) (see Fig. 5.2):

q(t) = gn (t) + GV (1) (5-3)

The direct measurement of the output voltage signal can be used to determine the frequency
spectrum of the background charge noise in the frequency range where it dominates over the
intrinsic shot noise and over the output amplifier 1/f noise. Characterizing the low frequency

part of the background noise spectrum thus requires a careful rejection of the amplifier noise.

We have performed a specific “lock-in” detection by modulating the gate voltage. This
indirect measurement method has the advantage of shifting the charge noise spectrum to
frequencies for which the amplifier noise is orders of magnitude lower. Such a technique is
detailed in Appendix 5-A. The other measurement circuitry is similar to those used for the

superconducting box experiment (see Appendix 2-A).

The calibration factor which relates the output signal spectrum to the background noise
spectrum can be determined through two independent ways. In the first method, we measure
the mean value of the modulation slopes (%—Z) where the detection is performed in order to
determine the overall gain and therefore the spectrum calibration. In the second method, a
direct calibration is obtained by superposing onto the gate voltage a small harmonic marker
signal, corresponding to a known fraction of electron. The marker peak integral found in the
obtained spectrum then provides a second calibration of the spectrum, obtained “in-situ”.

Finally, we check that the direct and indirect methods give the same results in the frequency
range for which both of them can be used. Usually, the spectrum in the bandwidth 10~ —10 Hz
is best measured around a carrier wave of frequency 70 Hz whereas for higher frequencies the

direct measurement is sufficient.

5.2.2 Measured charge noise spectra

Noise power spectra obtained at T=20 mK with the direct and indirect methods are shown
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in Fig. 5.5. Both methods are in good agreement in the intermediate common frequency range
3-20 Hz. The frequency dependence over the whole frequency range follows a 1/f noise law.
The two marker peaks at 1 Hz and 10 Hz result from an extra gate charge modulation with
amplitude e/10; their intense signatures in the spectra reflects the large signal-to-noise ratio
provided by such an electrometer.

One has to note however that the 1/f dependence is not always observed as shown fur-
ther below (see Fig.5.9). We have found that spectra following a 1/f dependence are also
temperature independent below a temperature of the order of 100 mK.

To make sure that the measured noise does originate from the SET background charge
noise, we have repeated the measurements at a SET working point for which the charge gain
is zero (see Fig.5.14a in appendix 5-A). The resulting spectrum (curve a in Fig. 5.6) falls well
below the first one obtained at full charge gain (curve b), thus ensuring that the measured noise
at the optimal bias point cannot be attributed at frequencies below 100 Hz to the parasitic
noise of the measurement set-up. The charge noise reference level of this SET is equal to
3x10 e/ VHz at a frequency of 10 Hz. It is interesting to notice that charge noise spectra
with similar 1/ f dependence and similar levels have been obtained by other groups on metallic
SET electrometers [9, 10] but also on semiconductor-based quantum dots [12,13]. One can
wonder whether this striking “universality” of measured charge noise levels has a physical

signification.

5.2.3 Interpretation of the noise spectra

The 1/f dependence is compatible with the hypothesis that the noise is generated by
a collection of fluctuating dipoles with distributed switching times, each one producing a
two-level telegraphic noise. Indeed, the superposition of Lorentzian spectra originating from
uncorrelated noise sources readily leads to a 1/f dependence (see a discussion of this property
in the end of Appendix 5-C). Similar two level fluctuators have already been detected inside the
oxide barrier of SQUID Josephson junctions by measuring the telegraphic noise they induce
in the critical current [15].

Could the charge noise measured by the SET has the same physical origin? More specifi-
cally the question to be addressed now is: does the charge noise originate from dipoles which

are more or less regularly distributed within the substrate or is the noise dominated by dipoles

- 198 -



0.2
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Figure 5.5. Background charge noise power spectra of the SE'T measured at T = 20 mK for a
maximum gain and optimal bias current 65 pA. The dashed spectrum has been obtained using
the specific lock-in technique whereas the other one results from a direct measurement. The
two peaks at 1 Hz and 10 Hz correspond to sinusoidal markers of amplitude 5. Parasitic noise
at 50 Hz 1s equivalent to a sine signal with peak to peak amplitude : 5x10 " e.

-1 T T llllHO T T 2222221 T T 2222222
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Figure 5.6. Noise spectra of the SET electrometer at T = 20 mK at an optimal bias current
I =65 pA. Curve a has been obtained at minimum charge gain and gives the residual noise of
the measurement set-up. Curve b has been obtained at maximum charge gain. The thick line
indicates the predicted shot-noise level.
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which are concentrated in the vicinity of the island surface or even in the oxide barrier of the
tunnel junctions like in the Josephson junction experiments?

In the case of a uniform distribution of dipoles, we have calculated that the charge noise
scales with the self-capacitance of the island: see Eq. 5.20 in Appendix 5-B. Such a scaling law
is in qualitative agreement with the island size dependence found by Verbrugh et al. [14] on
SETs with different islands. In order to investigate the noise origin in SETs fabricated with
our new fabrication process, we performed an experiment with three SETs deposited on the

same chip but having different island sizes and deposited on two different bottom substrates.

5.3 Origin of the charge noise

5.3.1 A test experiment

In this second experiment, we simultaneously fabricated three SETs on the same chip. All of
them have nominally identical tunnel junctions, in order to ensure similar charge modulation
and detection gain. Their patterns are sketched in Fig. 5.7. SET n°1 has a small island (0.1 x
1 pm?) and is deposited on top of a 0.5-um-thick polyimide layer covering a grounded gold
plane. SET n°2 has a large island size (0.1 x 10 um?) and same substrate as SET n°1. SET n°3
has an island similar to SET n°1, but is deposited on top of a 0.5-um-thick polyimide layer
covering oxidized silicon (silica thickness: 0.5 um). Comparison of the noise levels of SET n°1
and SET n°2 will reflect the influence of island size while comparison between SET n°1 and
SET n°3 will determine the influence of a silica substrate.

The noise measurements were performed using the same method as previously described.
Values of the noise levels measured at different frequencies are given in table 5.8.

Noise levels measured for the three SETs are almost equal at very low frequencies (in the
bandwidth 0.1-1 Hz), whereas differences appear in the frequency range 10-100 Hz. Differences
of noise level between SET n°1 and SET n°3 remain small : the silica layer at 0.5 pum beneath
the island has little influence on the noise level. On the other hand, the noise level for the
large-island SET (SET n°2) is the double of that recorded for the small-island SET (SET n°1).
A perfect capacitance scaling would have given a noise level (in units of e/v/Hz) 3.2 times
higher for the SET n°2. Although the noise level increases with the island size, it does not

precisely scale with the island capacitance.
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SET 1 <=
SET 3 ‘ ,ffi::'.::::'.'.::::::::::'.'.:'::'..:::

polyimide 7%/

Gold layer

Figure 5.7. Layout of the chip with three SETs fabricated to test the influence of the substrate
and of the island size on the charge noise. SET n°1 has a small island (~ 1um) and is deposited
on polyimide over a ground plane. SET n°2 has a large island (~ 10 ym) and same substrate as
SET n°1. SET n°3 has an island similar to SE'T n°1 but is deposited on a substrate composed
of 0.5 um of polyimide on top of a 0.5 um silica layer. Comparison of the noise levels between
SET n°1 and SET n°2 test the influence of island size while comparison between SET n°1 and
SET n°3 test the influence of the insulating layer composition.
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Whatever its constitutive material, the substrate thus contributes to a large part of the
observed charge noise with a rather constant noise level. However, participation of other
sources are presently not excluded. Let us mention here that in all these noise measurements,
we had difficulties to obtain precise estimate of the noise level, since it is subject to random
changes in time even with keeping physical parameters constant.

We attribute these changes to the time dependence of two-level fluctuators.

Frequencies

Noise levels(e/(Hz) | (.1 Hz 1 Hz 10 Hz 100 Hz
= SET 1
Z lisland T pmon | 9.9¥1073 | 2.6x1073 | 4.7x107* | 1.4x107*
% Polyimide/Gold
<
g SET 2 ) ] ] ]
S | island 10 jm on | 6:7X107 | 2.5x107 | 8.3x10-4 | 2.6x10-4
E Polyimide/Gold
g SET 3
£ |island 1 pm on | 1.0 X102 2.5x10 3 5.0x104 2.0x104
é’ Polyimide/Silica

Figure 5.8. Average charge noise levels measured at different frequencies for each of the three
measured SETs.

5.3.2 Observation of a single two-level fluctuator

The hypothesis of two level fluctuators is further confirmed by the occasional direct ob-
servation of the telegraphic noise due to a single large fluctuator. Examples of direct time
recordings of the output voltage of a SET displaying two superimposed telegraphic noises are
reproduced in Fig. 5.9c. We have observed fluctuators with amplitudes up to 0.4 ¢ and with
time constants up to 10 s. Each fluctuator is characterized by the two average life-time of each
state 71 and 75, that can be of the same order of magnitude (see Fig. 5.9,b) or very different,

as shown in Fig. 5.10.

Such large fluctuators can dominate the total observed noise as shown in Fig. 5.9,a. We
have found that the amplitude of a given fluctuator is stable in time whereas life-times is

subject to random changes in time (see Fig. 5.9,b). These variations lead to a shift in the
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Figure 5.9.

a) Noise power spectra of SET n° 2 measured at 20 mK, at different moments, two days apart.
Both spectra were recorded when a single two-level fluctuator dominated the noise, thus ex-
plaining the strong deviations from a 1/f dependence. The peak at 10 Hz in the upper spectra
s a calibration marker. The dashed line is the direct Fourier transform of the time trace of
the dominating two level fluctuator shown in the lower trace of panel (c). The characteristic
switching frequency of this fluctuator is of the order of 1 Hz.

b) Time recordings of the output wvoltage of SET n°2 showing a single dominating
two-level-fluctuator whose life-time in one state changes in time. Upper (resp. lower) time
trace corresponds to the upper (resp. lower) spectrum shown in a).

c)Time trace of the fluctuator plotted in b) showing its decomposition into two superimposed
fluctuators. The dominating fluctuator (lower trace) gives a lorentzian spectrum which fits well
the associated noise spectrum (see panel a).
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characteristic roll-off frequency f = (71 + 72) / (T172) of the fluctuator spectra (see appendix

5-C), and explains the observed modifications of the noise level in time (Fig. 5.9a and b).

1'2F - . . . . ,

1.0f |

[} L ]
o L ]
0.4 wmlmm |

0.2 '

0.0 ;
o 2 4 6 8

t(s)

Figure 5.10. Time recordings of the voltage accross a SET showing a single two level fluctu-
ator producing a 0.17e telegraphic noise. Unlike previous recordings, this fluctuator has very
different life-times 71 and To. Traces measured for increasing temperatures are shifted for
sake of clarity. From top to bottom, temperatures are 25, 36, 77, 100, 144, 269 mK, respec-
tively. The reduced amplitude of the lower traces is not due to a reduction in the noise but to
a reduced sensitivity of the SET with increasing temperature.

We have measured the temperature behavior of a single two-level fluctuator which has a
very short life-time in one of the two states, thus defining a single switching rate. As shown in
Fig. 5.10, the switching frequency increases with temperature even at very low temperatures.
We have checked that the switching process follows uncorrelated Poissonian statistics at all
temperatures (An example is provided in Fig. 5.11). The temperature dependence of the
corresponding “long” life-time 75 is shown in Fig. 5.12. Actually, this life-time does not follow
a simple thermal activation law and its temperature dependence flattens at low temperature.

Tunneling activated by unknown processes are then involved.

5.3.3 Localization of the large two level fluctuators

Assuming that a two level fluctuator inducing a charge §q for the offset charge corresponds
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Figure 5.11. Distribution of the switching time of a two-level fluctuator, at 269 mK. This
distribution was infered from the analysis of the largest switching time in a recording plot-

ted in previous figure. The distribution obeys Poissonian statistics with a characteristic time
T~ 14 ms.
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Figure 5.12. Temperature dependence of the characteristic time T of a single fluctuator ob-
tained by fitting time distributions similar to the one shown in the previous figure. The two-level
fluctuator does not follow a thermally activated behaviour.
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to a dipole P, one deduces from Eq. 5.16 the following inequality:
P> (5q X dmin R (54)

where d,,;, is the minimum distance between the island and any other electrode. The closest
approach d.;, ~ 1 nm is obtained for dipoles lying in the tunnel barrier or extremely close
to it. Large fluctuators with amplitude 6q ~ 0.4 e thus result from dipoles larger than the
product of e by an atomic distance. Zorin et al. have also observed similar large fluctuators
[10]. These authors have localized them in the substrate because they could perform a “stereo”
detection using two different SETs close to one another. The dipolar moment corresponding
to such a fluctuator would then be larger than 10 e x nm. A reasonable explanation for the
microscopic origin of fluctuators with such large amplitudes has not yet been proposed.

The last experiment tells us that that noise measurements in SETs actually depends on
two independent factors:

e the nature of the sample (geometry, materials) which fixes a given set of trapped
charges that can be activated

e the experimental set-up, and the physical parameter of operation (temperature..)
that set a variable activation level for the trapped charges.

As pointed out by Zorin [6] , the time dependence of the noise level for a given sample can
be therefore explained by a variable activation of the set of trapped charges. Among many
possible causes of activation, three main causes have been observed:

e improper filtering, that let photons activate the noise
e large gate voltages, which causes locally high electric fields
e intensive thermal cycling, which thermally activate trapped charges
Further studies are necessary to see if substrates and tunnel barriers fabricated using other

materials can possibly lead to a decrease of the noise level.

5.4 The SET as a position detector for charged
particles

We have shown that a SET has the ability to detect single microscopic charge fluctuators.
Could it also be able to detect the passage of moving charged particles in the vicinity of its

island? We propose, in the paper reproduced in Appendix 5-D, to use SETSs as position sensors
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for low energy charged particles.

We show that SETs operated at high-frequency could, in principle, detect a single charged
particle passing at a speed of 10 m/s within a distance of about 0.5 mm from the island. This
sensitivity could be used for a delicate measurement in particle physics: the monitoring of
the position of an antiproton released in a drift tube. Several SETs independently operated
and placed along the trajectory would be required to monitor the particle position during it
motion. A relative determination of the gravitational mass of the antiproton, an important
issue in general physics, could be obtained from the time-of-flight recordings. We discuss in

particular the back-action noise of the measuring SET on the moving particle.

©

Figure 5.13. Schematics of the proposed position sensor for charged particles based on a SET
electrometer. The SET measures the polarization charge 6q induced by a charge ¢ moving along
the z azxis.
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Conclusion

In this chapter, some results concerning electrometry applications of single electron de-

vices have been obtained:

e SET-based electrometers have a detection threshold determined at low frequencies by

fluctuating background charges.

e The typical charge noise level of a SET electrometer with island size 0.1 x 10 um, fa-
bricated on a polyimide substrate is equal to 3x10 %e/v/Hz at 10 Hz. This value appears

somewhat universal and seems not to depend on the chemical nature of the substrate

e For a given configuration of fluctuating charges, the background charge noise of a SET is
determined by a purely geometrical factor. In particular, in the case of uniformly distributed

charges, we predict that the charge noise scales with the island capacitance.

e The charge noise of a SET is occasionally dominated by a very small number of two level
charge fluctuators which produce a telegraphic noise. The noise power spectrum contains then
Lorentzian spectra superimposed on the 1/f dependence.

e The location of such large fluctuators has not been determined but their strong influence
on the SET suggests a position very close to the island or in the oxide barrier of the tunnel
junctions. It is not excluded that fluctuating charges of different origin may contribute at the
same time.

e These fluctuators do not follow a simple thermal activation law.
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Appendix 5-A
Noise detection ‘“lock-in” technique

We describe here the detection technique we have used to extract the background charge
noise of a single electron transistor. This method is greatly inspired from the lock-in technique
commonly used for DC-SQUID operation [7]. We apply on the gate capacitor a square signal
) of frequency vy and amplitude ¥y with an offset Vj:

Vo) =3 (t) = Vo+ % x Ty (1), (5.5)

where T, is a square wave of frequency v, switching between the values +1.

In the absence of charge noise, the output voltage has the following ideal form:
(U1 + Us) n (Uy — Uh)
2 2
where Uz = V(V, =V &+ ).

V=

x Iy, (1), (5.6)

Small variations of the gate voltage around the two bias points induce changes in V deter-

mined by the dynamic gains g, = (g—“,/) and g, = (g—“;) . A charge gain (a_v) =g/C, is
9/ U, 9/ Uy U :

dq
associated at each point.

NN

Figure 5.14. Noise detection technique.
As a square voltage signal 3 is applied on the gate capacitance, the output voltage V switches
between two values Uy and Us. By adjusting offset and amplitude of 3, the dynamic gain for
small variations can be chosen either minimum (case a) for set-up noise checking or maximum
(case b) for charge noise measurement.

In presence of a background charge noise g,, the output voltage is given by the following

expressions:
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e during the first half-period :

oV g1
Vi = U n Ui+ = xq,(t). 5.7
1~ 1+<6q>U1XQ() 1+Cg><Q() (5.7)
e during the second half-period, a symmetric expression is obtained:
Vomo Us + 22 x g, (1) (5.8)
Cy

The global expression of the output voltage in presence of noise is then:

vallweoy s 0t - %) g, <t>] 4 D), [(zfg _uy 4+ 9 z9) 0‘992) %4, (1)] . (5.9)

If the gains are such that g; + g < g1 — g2 (case b of Fig. 5.14), the first term has only
a DC contribution whereas the second term corresponds to the charge noise chopped by the
square signal.

The Fourier spectrum of the output voltage is therefore proportional to the convolution

product of the charge noise spectrum with the Fourier spectrum I',, (1) of the square wave:

V(v) o« go(v)* Ty (v) (5.10)
with: Ty, (1) = nzj m (W= (2n+Dvg) — 86w+ @n+Dv)].  (5.11)
A
Sy
/\ /\ A,
CV VO+V V
0 Vo Vo

Figure 5.15. Schematic plot of the output voltage SET spectrum obtained using the lock-in

method. The low-frequency noise is symetrically shifted around odd harmonics of the carrier
wave with frequency vy.

The charge noise spectrum is then symmetrically shifted at regularly spaced frequencies
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(2n+1)vg (see Fig. 5.15). If the charge noise cut-off frequency v, satisfies the condition v, < vy,
the shifted spectra do not overlap and the low frequency noise can be measured by zooming

around the fundamental frequency v.

Near the fundamental frequency v, the power spectrum is obtained from a spectrum ana-
lyzer. For our measurements we used two different analyzers, a Scientific Atlanta SD-380 and
a Hewlett Packard HP-35665A. The analyzer acquires time traces of the SET voltage V(¢)

and it output gives the following power spectrum:

Sy (v) = (v (v)

)2 + (f/ (—u)(2 = <917T;g92>2 (S, (v — 1) + S, (vo —v)), (5.12)

where S,(v) is the charge noise power spectrum of g, (t) restricted to its positive part,

ensuring the power conservation :

lim 1 (gn(t))* dt = /000 Sy (v) dv. (5.13)

=00 U Jo
Depending on the offset of the carrier ¥, we can adjust the differential gain (g; — g2) either
to its maximum value for the noise detection (Fig. 5.14, case b), or to nearly zero (Fig. 5.14,
case a). In this last case, we can check that the noise level is orders of magnitude lower than
the noise measured in the case b) thus ensuring that the measured noise does originate from

the background charge noise.
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Appendix 5-B
Charge noise of the electrometer induced by
fluctuating dipoles

We first determine the polarized charge 6q induced on the island by a charge ¢ placed in the
substrate at a distance 7 from the SET island. We use for that purpose a very general relation
of reciprocity for a linear system composed of a collection of conductors i: Considering two
states determined by of set of charges (q;), (resp.(q})) and potentials (V;), (resp.(V})) , they

obey the following reciprocity relation:

POTACES B) DERFITED 3) DAL SIAA (519
i i J J % J

where C}; are the capacitance matrix elements.
We apply this reciprocity relation to the two different following states of the system con-
sisting of the SET and of a point charge placed at " :
e all SET electrodes at V = 0 and a point charge q at 7 inducing 6g on the island.
e island at potential V; = Vj, other SET electrodes at V' = 0 and no charge (¢ = 0) at 7.
Eq. 5.14 then leads to: gV () + 6gVy = 0. The polarized charge 6q on the island thus is:

v

7 (5.15)

bg =—q

where V(r) is the potential at point 7 obtained when the island is at potential V, and the
perturbing charge q is removed. The ratio V' (') /V; is a purely geometrical factor.

This result is easily extended to the case of a dipole P:

5q = ﬂ’ (5.16)
Vo

where E (7) is the electric field at point 7 similarly obtained when the island is at potential
Vo and the perturbing dipole is removed. The influence of a dipole thus strongly depends
on its position. Eq. 5.16 shows that dipoles have a stronger influence on the electrometer
noise when they are located on short electric-field lines emerging from the island to the other
electrodes. In particular, charge displacements in the oxide barrier of one of the junctions are

the most effective.
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The total polarized charge due to a distribution of dipoles around the island is:

6q(t) = /// d*r w (5.17)

The time autocorrelation function of the induced charge is thus given by:

59(0)6q(t) = / / / iy 20)-E (F)VXUQP (7,1)-B(7) (5.18)

Assuming that the distribution of dipoles is isotropic with a constant volumic density n,,

the autocorrelation function of 6q is given by:

sapsa() = 2 (F(0). P / / / dr

= np? <€§;«> 7

where C is the total capacitance of the island with respect to the ground and P(t) is the time

(5.19)

B
Vo

—)
autocorrelation function of the dipole distribution P (7,t) averaged on both time and space.
Note that in real-cases, we rather face a planar geometry since single electron transistors are
deposited on top of an insulating layer. With dipoles only distributed in the lower half-space,
Eq. 5.19 becomes:
P(t C
(a0)3a(0) = x m g (). (5.20)

€0€r

where 7 is a geometrical factor lying between 0.5 and 1 (see Fig. 5.16). In the case of a
substrate with a uniform dipole distribution, the background charge noise thus almost scales

with the island capacitance.
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0) y=3(1+é)=4

Figure 5.16.

a) Schematic layout of the electric field lines diverging from a charged island immersed in a
dielectric material.

b) Cross section of a “real case” set-up for a SET deposited over a substrate with a bottom
ground plane. Almost all electric field lines reach the substrate leading to a geometrical factor
v close to 1.

¢) cross section of a “real case” set-up for an insulating substrate: electric field lines converge
towards neighboring electrodes and the geometrical factory is almost equal to %
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Appendix 5-C
1/f noise induced by a collection of two-level
fluctuators with distributed switching energies.

We calculate here the background charge noise spectrum in the particular case of a distri-
bution of dipoles generating a telegraphic noise. By applying the Wiener-Khinchin theorem
to Eq.5.20, we obtain the relation between the charge noise spectrum density S,(f) and the

Fourier transform P(f) of the correlation function P(t) :

C -
= ”ynpgeoerP(f) (5.21)

S4(f)

Let us assume that each dipole randomly switches between two states and can be modeled as
a two-level fluctuator emitting a telegraphic noise. Such an assumption has been experimen-
tally proven to be well followed at least for dipoles strongly coupled to the island since such
“trapping events” can be individually measured (see Fig. 5.9). The conditional probability
p; that the dipole ¢ will stay in a given state, is then given by simple Poissonian statistics :
pi(t) = e7¥/™ where 7; is the average life-time of the state. In such a case, the two-level fluc-
tuator is supposed to be characterized by two times 7; and 79, which correspond respectively
to the life-time of each state. Machlup [16] has shown that this telegraphic noise produces a
Debye-Lorentzian noise spectrum of the following type :

T1T2

(11 + 7'2)2

ST(f) =

Teff 1 Teff
~— X ) 0.22
1+ (27Tf)27'gff] T 1+ (27Tf)27'§ff ( )

where 1/7.s; is defined by the sum of the two attempt rates : 1/7cpr = 1/7,+1/7,.

This spectrum has a roll-off frequency 1/7.¢¢ and a 1/f* dependence above it.

A collection of dipoles with similar moments but different roll-off frequencies results in a
spectrum with rough 1/f dependence in the range of the roll-off frequencies. This trend is
illustrated in Fig. 5.17 where only three fluctuators of that kind have been superimposed.

In the case of a normalized distribution I'(7.s) for the characteristic times, the total

spectrum is:

P(f) = /OOOF(Teff)ST(Teff)dTeff (5.23)
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Log Sq

Log f

Figure 5.17. Noise spectrum obtained from the superposition of three two-level fluctuators
with similar amplitudes but different roll-off frequencies. The spectrum, which is the sum of

the three corresponding Debye-Lorentz spectra, displays a rough1/f dependence in the roll-off
frequency domain.
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Figure 5.18. Distribution of trapping energies (top) and of the corresponding characteristic
switching times (bottom) for a thermally activated process.
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1 > Teff
= - r e d e
7T/0 (r ff)1+(27rf)273ff Ters

A 1/ f spectrum is obtained in particular for a distribution I'(7.s7) o T—lff over a sufficiently

large time interval [Tiin, Tmax):

min
Tmin

= - X [tan’l(QﬂmeaX) — tan’l(Qﬁmein)} X %

272 In (M)
1

1
2mIn (T’“a") !

. 1 e dr
P = —— [ o
ln (Tm—) i 1 (TF)TE

(5.24)

Q

Distributions I'(7.ss) with a # dependence can originate from various physical phenom-

ena.

Thermal activation over potential barriers with a flat barrier height distribution provides

one example, as shown below.

More precisely, if one assumes thermally activated rates % = veP/ksT with a constant

density of barrier heights in the interval [Eyiy, Emax], (see Fig. 5.18).
In the time interval [pe=tmax/ksT pe=Ftmin/ksT] “the distribution of characteristic times is:

kT

D(7esp) = (5.25)
1 Teff(Emax - Ernin)
The % spectrum amplitude is in this simple case proportional to the temperature:
. kgT 1
P(f) = 5.26
<f) (Emax - Ernin) 8 27Tf ( )
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Appendix 5-D

Instrumental application:

Measurement of the antiproton gravitational mass using a single electron transistor

Published in Hyperfine Interactions 109, 345, (1997).
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Abstract

We propose a non destructive method to measure the trajectory of a single
antiproton in a drift tube using position sensors based on the Single Electron
Transistor. We show that this recently developed device has sufficient sensi-
tivity to detect the electric field of a moving charged particle. Comparison
of the trajectories of individual antiprotons and H™ ions may allow a reliable

determination of the gravitational mass of the antiproton.

Hyperfine Interactions 109, 345, (1997).




INTRODUCTION

The measurement of the gravitational mass of an antiparticle has been the subject of
interest and considerable experimental effort over the past thirty years [1-4], without success
until now. Pioneering experiments on the electron by Witteborn and Fairbank [1,2] aimed
at ultimately measuring the gravitational mass of the positron. However, the original result
of Witteborn and Fairbank [1,2] has been partly retracted [5] and, for reasons which will be
analyzed below, we are probably still very far from a measurement on the electron or the
positron.

On the other hand, the Low Energy Antiproton Ring (LEAR) at CERN has been pro-
viding for the last ten years an intense beam of low-energy antiprotons. The PS-200 col-
laboration [6] has thus proposed to measure the gravitational mass of the antiproton using,
similarly to Witteborn and Fairbank, a time-of-flight technique in a vertical drift tube where
the antiprotons would be confined along the vertical axis using a strong magnetic field. The
technical difficulties of such an experiment are enormous. Because of the large annihilation
cross-section of an ultralow-energy antiproton, a vacuum of extremely high quality is re-
quired for the antiparticles to survive the cooling and measurement stages. But the main
experimental problem probably resides in the stray electric fields [7] which easily overwhelm
the tiny gravitational force on the antiproton. Whereas a differential measurement is in
principle possible using a comparison with the time-of-flight of H™ ions, two conditions
should be achieved for this comparison to be meaningful : firstly, the conditions of release
of antiprotons and H™ ions in the drift tube should be kept identical to a high degree of
accuracy and, secondly, the stray electric fields should be kept at a value constant in time
and sufficiently small compared to the gravitational force.

We propose here to replace the time-of-flight measurement by the direct monitoring of a
single trajectory. More precisely, we propose to use ultra-sensitive electrometers distributed
along the drift tube to determine the passage times of a single particle trapped in the tube.

Such non-destructive and repeated measurements would considerably relax the constraints
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mentioned above. Electrometers approaching the requirements for single particle monitoring
have recently been developed. They are based on the Single Electron Transistor (SET) first

operated by Fulton and Dolan in 1987 [8].

II. DISCUSSION OF EXISTING AND PROPOSED EXPERIMENTS.
A. FEzisting experiments.

The measurement of the gravitational mass of individual particles has been achieved
only on neutral particles, namely photons [9,10], neutrons [11] and atoms [12]. Although
several techniques have been proposed [1,4,13,14], no measurement has been successfully
carried out on charged particles. Only indirect determinations have been deduced from
measurements on bulk matter [15]. As mentioned previously, the situation is even more
dramatic for antiparticles since cooling them at ultra-low energies is made difficult by their
large annihilation cross-sections. State-of-the-art developments on the antiproton include
the Gabrielse trap [16] and the Holzscheiter trap [4]. These traps have been shown to capture
and hold up to 10° particles for several months under optimum vacuum conditions using
cryo-pumped cavities [17]. In the Gabrielse trap [16], the slowing down of individual an-
tiprotons down to velocities of a few hundreds m/s, typical of the velocities we will consider
in the following, has been achieved. On the other hand, the Holzscheiter group [18] has
demonstrated the feasibility of extracting antiprotons from the trap and transferring them

to other experiments.

B. Residual electric field problems.

It should be remembered that the action of gravity on a proton can be counterbalanced by
an electric field £ = my,g/e &~ 1077 V/m. For an electron, this field is of course approximately
2000 times smaller and of the order of 5x 107! V/m. This gravitational force is so weak that

the attraction force of an electron to the Earth is equivalent to the electrostatic force applied
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by a single electron 5 meters away. For this reason, the measurement of the gravitational
mass of the antiproton appears more realistic than that of the positron. Even in this case,
however, all nongravitational forces must be suppressed with a high degree of accuracy.

The experimental problems raised by the gravitational mass measurement of individual
charged particles have been reviewed by Darling et al. [20]. The main experimental difficulty
appears to be due to the patch effect [7]. To reduce the ambient electrostatic forces, a
metallic drift tube is used in all existing or proposed experiments. However, although
textbooks state that the electric field is zero inside a conducting cavity, the non-uniformity
of the dipole density at the surface of crystal domains induces a residual field. This effect,
called patch effect, is due to variations of the work function from one domain to another by
a fraction of eV. For some metallic surfaces with amorphous coatings, the variations of the
surface voltage @y integrated over the area of a Kelvin probe appear to be reduced close to
its sensitivity [7] which lies in the mV range. The size of these patch domains is typically
[l ~ 1um. The residual potential fluctuation along the axis of a cylinder with radius p has
a root mean square value ®,,,s ~ 0.6 ®yl/p. This would correspond to potential variations
less than 107° V in a tube with p = 0.1 m. In order for the patch effect to be negligible
with respect to the gravity force, a reduction of such variations by two orders of magnitude
seems then required. Therefore, these stray electric fields which can very easily overwhelm
the effect of gravity constitute the most stringent constraint on any measurement of gravity
on a charged particle.

In these conditions, the measurement of the gravitational mass of a charged particle ap-
pears extremely problematic since existing and proposed experiments can only give access
to a single quantity, i.e. time-of-flight or position of the particle, after which the particle is
either irretrievably perturbed or even annihilated. Repeated weakly perturbative measure-
ments thus appear necessary to disentangle the gravity and electric field contributions. We

now discuss whether position sensors based on SETs could meet these two requirements.
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III. THE SINGLE ELECTRON TRANSISTOR
A. Description.

Various single electron devices in which the current results from subsequent transfers of
single electrons have been operated during the last ten years [24]. The SET is the basic
active device of single electronics. It consists of two ultrasmall tunnel junctions in series,
with a small intermediate electrode (island) capacitively coupled to a gate electrode (see Fig.
1). This device is characterized by the tunnel resistance R; of each junction and by the total
capacitance of the island C =C; + 2C;, where C; and C, act respectively for the gate and
junction capacitances. In a voltage biased SET, the current is periodically modulated by
the gate voltage V,, the period corresponding to one electron charge induced in the island.

Two conditions are required for operating a SET :

1) The tunnel resistance R; of each junction should be of the order of or larger than the
resistance quantum Ry = h/e? &~ 25.6 k(.

2) The island capacitance C must be small enough and the temperature must be low
enough so that the energy E. = €?/2C required to add a single electron charge to the island
exceeds by far the available energy of thermal fluctuations, i.e., E. > kgT. In practice,
C=1 fF, which requires sub-Kelvin temperatures.

When these conditions are satisfied, the island charge corresponds to an integer number
of extra electrons and the current results from the sequential tunneling of electrons one by
one through both junctions. Each tunnel event occurs at a rate which depends on the change
in electrostatic energy that it induces. Since the electrostatic energy of the island depends

on the gate voltage, the current through the device is modulated by the gate voltage.

B. A highly sensitive electrometer.

Current modulation curves of a typical SET with metallic tunnel junctions are shown in

Fig. 2. A maximum modulation depth of the order of e/(R;C) is obtained for a bias
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Rt, C; Rt,C;

0 C

777

Figure 1: Schematic diagram of a voltage biased Single Electron Transistor. The
intermediate electrode between the two tunnel junctions is an “’island” whose
charge is quantized in units of e. Ry and Cj are respectively the tunnel resistance

and the capacitance of each junction. The gate voltage induces a polarization
charge on the island which modulates the current.

Vg(mV)

Figure 2 : Current modulation curves of a SET as a function of the gate voltage for
a temperature of 20 mK. The different curves correspond to a set of values of the

bias voltage V separated by 25 pV. The island capacitance is C=0.6 fF. The
maximum charge sensitivity is obtained at the working point O.
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Figure 3 : Schematic diagram of a charged particle position sensor based on a SET. The
SET measures the polarization charge dq induced by the charge q moving along the z
axis.
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voltage V = e¢/C. Any variation of the electric field near the island will induce in the island
a polarization charge that will act in the very same way as a similar change of the gate
charge ¢ = C,Vj,. Since a SET is a sub-electron sensitivity electrometer for the induced
polarization charge on the island, it is worth noticing that SETs can already provide an
important improvement in the measurement of the residual electric field in a metallic drift

tube as compared to Kelvin probes [7].

IV. SET AS A POSITION SENSOR FOR CHARGED PARTICLES

It is now clear that a SET can detect, at least in principle, the passage of a charged
particle in the vicinity of its island. The operating principle of such a detector is sketched
in Fig. 3. The island of the SET actually behaves like an antenna which probes locally the
electric field in the drift tube. Its self-capacitance contributes to the total island capacitance
C. The grounded electrode surrounding the SET shields the electric field due to the voltage
sources. One should however take care to keep the interaction energy between the particle
and this ground electrode sufficiently small to prevent trapping of the particle when passing
in front of the detector.

The SET measures the polarization charge 6¢ induced in the island by the charge q
moving along the z axis of the drift tube. The Gauss reciprocity identity shows that 6q =
—qV(7)/Vo, where V() is the potential at point 7 when the island is at potential Vy. The
coupling constant « (7) = —d6q/q =V(¥)/Vy is a geometrical factor which depends on the
position of the particle and on the shape of the electrodes. Expected variations of & when
a charged particle follows the z axis of a drift tube are shown in Fig. 4a. The characteristic
width w of this interaction curve is of the order of the minimal distance between the SET
island and the particle. It is worth noticing such a position sensor could also be used to
monitor the position of an antiproton in a trap.

The reciprocity theorem also implies that the measuring SET will have a back-action on

the particle. As seen from the particle, the fluctuating electric field due to the variations of
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Figure 4: (a) Expected dependence of the electrostatic coupling constant a
with the particle position z. The width w is of the order of the minimal
distance between the particle and the island. (b) Expected time dependence
of the current in three SETs distributed along a drift tube containing a
trapped antiproton moving back and forth between two reflectors. The effect
of gravity is deduced from the analysis of the passage times.
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the number n(t) of extra electrons on the island is given by :
E(7.t) = n(t) (¢/C) Va(r). (1)

The observation of the moving particle will thus induce a modification of the kinetic

energy of the particle.

A. Detection sensitivity of the SET electrometer.

Two kinds of noise limit the accuracy of the SET as a charge detector.

1. Shot Noise.

The first source of noise is intrinsic to the device: the successive transfers of single
electrons are uncorrelated and constitute a Poisson process. At the optimal working point
of the SET, the characteristic time 7 of this Poisson process is 7 ~ R;C. The current
noise is equivalent to a white noise in the charge to be measured with a spectral density
qn ~ V27 e/\/Hz. This noise figure is g, ~ 107> e¢/y/Hz for an optimized SET with a bias

current of about 1 nA.

2. Background charge noise.

The second source of noise is extrinsic: since the SET measures the polarization charge
induced on the island, any displacement of charges in the vicinity of the island results in a
parasitic signal. It has been observed that this noise originates from a collection of charges
randomly jumping between two positions. Each of them acts as a two-state fluctuator
producing a telegraphic noise with a given characteristic switching time. The superposition
of all these fluctuators results in a 1/f noise [21]. The amplitude of this 1/f charge noise
currently observed in SET’s regardless of the composition of the substrate is ¢y =~ 3 x

10~*¢/v/Hz at 10 Hz. It dominates the intrinsic shot noise up to a crossover frequency
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of the order of 10 kHz and result in a long time drift of the SET working point. A low-
frequency feed-back on the gate voltage is necessary to maintain the working point at the
optimal gain and to prevent the 1/f noise from acting on the moving charged particles.
The determination of the passage time of the particles is then not affected by the 1/ f noise
provided that the measuring time is less than 10~* s. In this case, the passage time of a
particle with velocity vy and charge e can be determined with an accuracy w/vy provided

that the following condition is satisfied :
O Moz g > q_N <2>
\/ Vo (&

B. Operation of a SET at high frequencies.

The measurement bandwidth of SETs is usually limited by the cut-off frequency of the
filtering circuitry connecting the device to the room temperature amplifiers. Coupling the
SET to a cryogenic amplifier that provides impedance matching is necessary to obtain a
large bandwidth. One realization [22] has been achieved by bonding a SET to a InP High
Electron Mobility Transistor (HEMT) thus leading to a cut-off frequency of 700 kHz at the
expense of an increased noise of 3x10 e/ vHz. Direct fabrication of a SET directly on top

of a HEMT is also promising [23].

C. Back-action of the measurement on the particle.

The electric field produced by the island charge at the particle position modifies its
energy. The change 6 F of the particle kinetic energy FEj after one measurement is 6FE =

e [ £.(z = v,t, t)v,dt. Using the expression (1) of the electric field, we obtain :
O
OF = 2FE, n(t)a—(z = vot)vodt (3)
z

The systematic part of § E cancels out because the temporal average of n(t) only depends

on the position of the particle through the coupling coefficient a(z):
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Figure 5 : Sketch of the antiproton gravitational mass measurement based on SETs.
Antiprotons in a Penning trap are injected in a drift tube and move back and forth

between two reflectors. X and Y position
the tube in order to monitor the trajectory.

sensors based on SETs are distributed along
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6_E:2EC/ n(a)—dz =0
trajectory ( )82

The assumption that the velocity of the particle remains almost constant during the

measurement requires, however, that:
AMaz
2F, / A(a)da ~ B.al,, < Ey (4)
0

The standard deviation § E* of the fluctuating part of § F is readily calculated assuming

B 2
OF" ~ EC UoT/ (—a) dz =~ ECOéA[ax UO—T (5)
trajectory 8Z w

Ensuring that the effect of gravity on the particle trajectory is not washed out by the

that 7 < w/vy :

back-action thus implies the following constraint on the design parameters :

Ecalwam\/ /UO?T < mng <6>

This constraint limits the maximum coupling o)., and thus prevents from benefiting
of the full sensitivity of the SET. This constraint is not, however, a fundamental limitation
imposed by quantum mechanics. In particular, the randomness in the charge-discharge
cycles of the island could be avoided if the island state corresponded to a coherent quantum
superposition of two charge states. SETs based on 2D electron gases could be, in principle,
operated in this regime, but the issue of back-action noise has not yet been investigated. On
the other hand, the large magnetic field in the drift tube forbids the use of superconducting

single Cooper pair electrometers which might also present a smaller back-action noise.

V. DESIGN OF A SET-BASED P GRAVITATIONAL MASS MEASUREMENT
A. Description.

The proposed geometry for the gravitational mass measurement of a charged particle is

schematically represented on Fig. 5. The particle (proton, antiproton, H™ or ion) is released
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from a Penning trap and confined along the vertical axis of a drift tube by a magnetic field
of typically 1 T. For the velocities considered here, typically 100 m/s, the cyclotron radius
R = myvy/(eB) of the trajectory is of the order of 1 ym so that the motion can be considered
to be one dimensional.

After the particle has been released from the Penning trap in the measurement region,
the potential at the electrode reflectors is increased so that the particle bounces back and
forth and is confined in the central region where the potential is kept as constant as possible.

Since the measurement is non-destructive, several SETs can be placed along the drift
tube to monitor the trajectory (see Fig. 5). In the configuration proposed, three measure-
ment positions are used. Two SETs have been placed at each measurement position in order
to estimate both the x and y transverse coordinates of the particle. Since obviously the
gravitational mass measurement requires a very small residual electric field in the measure-
ment region, the trajectory of the particle will slowly drift over a timescale of seconds. The
measurement of this drift will provide a further estimate of stray electric fields together
with the gravitational force. A differential measurement comparing the trajectories of an-
tiprotons and H™ ions, with the same electric charge, could provide a determination of the
difference of gravitational mass of these particles. In the case of H™ ions, the Stark effect
in the residual electric field also contributes to modify the trajectory. However, this effect,
compared to the effect of gravity, is negligible for the residual field amplitudes that have to

be obtained in the experiment.

B. Determination of the gravitational mass.

The potential energy U(z) of the particle in the tube is the sum of an electrostatic and
of a gravitational contribution. Assuming that U(z) is small compared to the total energy

of the particles £ = %mv%, the velocity v is:

v = \/%(E—U(z)) ~ o (1_ Zéfg))

which gives for the passage time ¢ (z) at position z :
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_Z N foz U(z)d7
™ g mug

t(2)

From the comparison of the passage times of antiprotons and of H™ particles at three
heights z; along the tube, it is possible to get rid of the common electrostatic contribution
through the differences [ U (2")dz'— [ Uy~ (2')dz" = (my—mpy-)g(zy—z), where m; and

mpy- are the gravitational masses to be compared. Repeated measurements would increase

the accuracy by averaging the back-action of the measuring SET's on the particles.

C. Operating parameters.

From the previous discussion, we propose here a realistic set of parameters that make it

possible to determine the gravitational mass of the antiproton :

e The PS196 experiment [16,17] has shown that antiprotons can be slowed down to

velocities vy ~ 100 m/s (i.e. with an energy Ey ~ 50 peV).

e We assume that a L ~ 1 m long drift tube with sufficiently low residual electric field
can be fabricated. A drift tube with a similar length is presently used by the PS200
experiment [19]. The corresponding gravitational energy change for a proton over this

distance is 0 E,; = mygL ~0.1 peV.

e The charging energy of each SET is chosen to be E. ~ 20 peV which corresponds to a
total island capacitance C' ~ 5 fF. This requires an operating temperature of 50 mK.

The tunnel resistance is chosen such as 7 ~ R,C ~ 10710 s.

e The chosen SET coupling parameters are ape, ~ 0.05 and w =~ 500 pm. These
values appear to be consistent with the chosen island capacitance C. With this set of
parameters, the characteristic energy change § E*due to back-action given by (3) is of

the order of 0.005 eV, which corresponds to 5% of $E,,.

e Assuming that the SET sensitivity is only limited by the shot-noise gy &~ 107° ¢/+/Hz

and that the bandwidth is 1 MHz, the signal to noise ratio obtained from Eq. (2)
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is eaprar/qny/w/vo &~ 10. The expected time resolution is therefore better than the

interaction time w/vg & 5 us.

VI. CONCLUSIONS AND PERSPECTIVES

From the previous discussion, we conclude that SET based technology offers an alterna-
tive for charge sensing that could be used to monitor the trajectory of a charged antiproton
in a trap or in a drift tube. The measurement of the gravitational mass of a single proton or
antiproton appears to be feasible by placing state-of-the-art SETs in a 1 m long drift tube

provided that residual electric fields are kept low enough.
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Chapter 6
Fabrication techniques

Introduction

The discovery of single electron charging effects and of other new phenomena in mesoscopic
physics results from the advances obtained during the last 15 years in the fabrication of
nanostructures. During that period, physical principles were selected and processes were
optimized in order to reach smaller dimensions. These recently developed techniques keep
sufficient versatility to allow the fabrication of a wide range of structures using a wide range
of materials. Almost all the fabrication of nanostructures can be separated in two main steps
which are respectively the patterning of the structure using a mask obtained by a writing
technique, and the deposition of materials. Since the patterning technique limit the resolution,
developments principally occurred in that field. The two writing techniques responsible for
recent advances are the X-ray lithography and the electron beam lithography which both
involve radiations with an associated wavelength so short that diffraction effects do not limit
the resolution. We present in the following the technique of electron beam lithography and its
adaptation to the fabrication of single electron (or single Cooper pair) devices.

Another recent trend of nanostructure fabrication was to take advantage of advances in mi-
croscopy to develop new patterning processes: The discovery of proximal probe microscopies

composed by the scanning tunneling microscope [1] and followed by the atomic force micro-



CHAPTER 6 FABRICATION TECHNIQUES

scope (AFM) [2] that has shown that imaging at the atomic scale is possible, have inspired
many new ways for fabricating nanostructures “from bottom to top”, eventually leading to the
direct manipulation of single atoms [3]. We present inthe following, a general fabrication tech-
nique using the atomic force microscope to fabricate structures with a resolution comparable

with those currently obtained using electron beam lithography.

6.1 Electron beam lithography

In the technique of electron beam lithography (EBL), a focused electron beam, emitted
from the gun of an electron microscope, locally alters a polymer resist. The beam position
is monitored by a computer in such a way that a precise irradiation dose is delivered on the
sample inside the designed pattern. Between two area exposures, the beam is shifted away
from the sample using beam blanking. After exposure is completed, the sample is removed
from the microscope and placed in a specific solvent with a great solubility difference between
exposed and non-exposed areas. In the case of polymethylmethacrylate (PMMA) resist which
is a positive resist, the exposed areas are completely removed by the solvent while the non-
exposed ones remain unaffected. This structure forms a mask which can be used in different
fabrication processes. Two kinds of processes are generally employed. In the first one, thin
layers of insulating or metallic material are deposited on top of the mask prior its removal in
a solvent (lift-off technique, see Fig. 6.1 left). In the second one, the pattern generated by the
height contrast between exposed and non-exposed areas is transferred to a layer underneath
using dry etching (etching technique, see Fig. 6.1 right). The resolution reached by EBL is not
limited by the electron beam radius nor by diffraction but by the scattering of decelerating
electrons inside the resist resulting in a partial exposure of the resist near the exposed pattern.
This broadening effect is especially important near large exposed areas where all small details
in the vicinity must consequently be underexposed according to a position-dependent exposure
dose correction. Such a proximity effect makes EBL a non-straightforward technique for
complex patterning. Since the scattering depends on the energy of accelerated electrons, the
achieved resolution lies between 50 nm for the 40 keV beam emitted of a scanning electron
microscope to around 10 nm for the high energy beam (around 300 keV) generated by a

transmission electron microscope [4, 5] .
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Figure 6.1 Electron beam lithography.

Top: the digital-to-analog convertor in a PC monitors the X/Y deflection of an electron
microscope beam.

Bottom: the two main post-processing sequences of an resist mask (white parts).

Left column: The height contrast is transferred onto a bottom layer by dry-etching.

Right column: The developed resist is used as a mask through which the top layer is
evaporated. Traces of resist are finally removed in a solvent during the lift-off process.
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In our laboratory, we use a 35 keV electron beam generated by a customized commercial
scanning electron microscope JEOL 840. With this apparatus it is routinely possible to accu-
rately fabricate, using technology described in the following, lift-off masks with a resolution

of the order of 60 nm.

6.2 Nanofabrication techniques for single electron
devices.

The observation of single electron charging effects in metallic islands requires the fabrication
of small electrodes connected through ultrasmall tunnel junctions. We have seen in previous
chapters that the tunnel junction size directly sets an upper limit for the operating temperature
of a single electron device. More precisely, the capacitance of an aluminum-oxide tunnel
junction with typical a overlap area of 0.1 x 0.1 um? is of the order of 1 fF, regardless of
the junction tunnel resistance. The associated charging energy corresponds to a temperature
of 1 K. Measuring single electron charging effects in such samples thus requires to cool the
sample down to temperatures T < 0.1 K which are routinely obtained in a *He-*He dilution
refrigerator. Therefore, both design and fabrication of the tunnel junctions, even though they
represent only tiny fractions of the whole structure, appear as critical.

Because we need, above all, devices with well-controlled parameters, the reliability of the
fabrication processes is more important than the achieved resolution. The required repro-
ducibility is obtained using a suspended mask, which ensures self-alignment of tunnel junction
electrodes. In the first part of this chapter, we describe three different processes leading to a
suspended mask: the well-known bilayer and trilayer processes, based on EBL, and a new one
that uses atomic force microscopy.

On the other hand, the field of single charge tunneling has now reached a stage in which
more complex structures must be fabricated to observe new properties. In order to meet this
demand, we have developed techniques that implement features which were impossible to
obtain with classical processes. As an example, we are going to show how to fabricate three
dimensional structures implementing vias, crossings, shielded lines for microwave transmission,

resistors and capacitors with overlapping electrodes.
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Figure 6.2 Top left: Schematic diagram of a suspended "double-slit" shadow mask during a
two angle deposition of Aluminum (steps 1 and 3). The first deposited Al layer is oxidized
between the two depositions (Step 2).

Top right: cross section of the mask showing the two shifted wires resulting from the two
angle deposition through the same slit.

Bottom left: After lift-off of the mask, the remaining metallic strips overlap on a small

surface which forms the tunnel junction.
Bottom right. Contact AFM image of a typical sample showing the topography height

contrast due to both electrodes of the tunnel junction.
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6.3 The suspended shadow mask technique.

The shadow mask technique is a widely spread method for fabricating sub-micron metal-
lic tunnel junctions [6] which has been used since the beginning of single electronics [7]. This
technique is directly adapted from the lift-off method presented in figure 6.1: the only dif-
ference from the basic lift-off is the existence below the mask of a spacer which is etched to
provide an undercut (see Fig. 6.2). Thus the mask is suspended over the substrate. If the
angle of evaporation is changed between two layer depositions, the mask edge shadows are
shifted (see Fig. 6.2): a single slit in the mask leads to separate projected electrodes. The an-
gles are adjusted in such a way that two deposited electrodes overlap over a small area. A
tunnel junction is obtained by oxidizing the first aluminum layer prior to the evaporation of
the counterelectrode. The junction capacitance and tunnel resistance can be controlled inde-
pendently by varying the overlap area and oxidation parameters respectively (see appendix
6-F).

The three processes that we have used for fabricating suspended masks are pictured in
Fig. 6.3. The first process is called ”bilayer process” because it involves two layers of polymer
resists [8] . The second is called "trilayer process” because it involves in addition a third
intermediate germanium layer which forms the mask. This was the first method developed for
fabricating suspended masks [6]. Even though these two processes (bilayer and trilayer) were
designed for EBL, both can be adapted to any type of ”writing” which generates a height
contrast on the top layer. We show below how the atomic force microscope (AFM) can be

used in a trilayer process instead of an electron microscope [9] .

6.3.1 The bilayer process

This is up to now the simplest process for fabricating suspended masks. Two layers of
polymer resists are deposited using spin-coating on an oxidized silicon substrate ( see appendix
A-1 for all technical details). The top layer is made of PMMA whereas the bottom layer is
made of PMMA /MAA' which has a greater solubility in the developer. This solubility contrast
creates a cavity below the mask with an undercut profile, thus allowing angle evaporations.

PMMA masks have two features which make them ideal for the multilayer fabrication

process presented in part 6.4.

1 copolymer made of polymethyl methacrylate and methacrylic acid.
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Figure 6.3: Scanning electron micrographs detailing the trilayer process used in early

stngle Cooper pair device fabrication.

Top: etched germanium mask be fore deposition. The bright zones surrounding the mask
edges corresponds to the wundercut in the copolymer ballast layer generated by an

1sotropic plasma etching.

Bottom: fully processed single Cooper pair box obtained after evaporation at three angles

through the germanium mask and final li ft-off (dashed frame shown above).
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Firstly, the two layers are almost completely transparent to scanning electron microscope
electrons thus allowing alignment of the exposed pattern with respect to previously fabricated
structures. Secondly, this lithography process can be performed over irregular surfaces because
of the smoothing properties of the bottom resist: a 400 nm-thick bilayer resist deposited on
a substrate with 500 nm deep holes and surface residual rugosity of typically 10 nm gave a
sharp lithography without any noticeable distortion in the shape of the deposited layers (see
picture 6.8 top panel).

6.3.2 The trilayer process

In this process (see appendix A-2), a germanium layer is intercalated between two polymer
layers with composition and thicknesses similar to the bilayer case. The top PMMA layer is
exposed as previously described but the developed pattern is transferred to the germanium
mask using anisotropic plasma etching. The undercut which is not obtained during the de-
velopment of the top resist (because of the protection provided by the germanium layer) is
realized using isotropic plasma etching.

Since the suspended mask is now made of germanium, it has an increased robustness com-
pared to PMMA masks. This is crucial for the fabrication of complex patterns with long
suspended bridges (see figure 6.4). In particular, it has proven to be useful for fabricating
structures requiring three angle evaporation such as our first single Cooper pair device de-
scribed in chapter 2. Another advantage is that the mask thickness can be strongly reduced
compared to PMMA masks: we have successfully used 10 nm-thick Ge masks whereas PMMA
mask thicknesses exceed 50 nm. Since the evaporation angle is limited by the thickness of the

shadow mask, thin masks allow depositions at larger angles and through narrower slits.

6.3.3 AFM-based lithography: an alternative to e-beam lithography

The basic idea that guided this work was to create a height contrast in a resist layer
by scratching it with a sharp AFM tip. We tried several resists such as unbaked PMMA,
photoresist, but the best results were obtained with ultra-thin layers of unbaked polyimide
which has a soft, non-sticky surface.

Since the AFM tip allows imaging at the nanometer scale, the furrow generated by engraving
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Figure 6.4: Comparison between three processes leading to a suspended shadow mask.
EBL processes involve irradiation of the resist by an electron beam whereas the process

depicted in right involves engraving with an atomic force microscope.
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the polyimide layer is expected to have a width in the same range. This is actually the case
but the achieved resolution (of the order of 40 nm) critically depends on the tip quality which
is determined by the sharpness of its apex.

We have adapted the trilayer process described above and successfully fabricated single
electron devices. These devices present the same characteristics as devices fabricated using
conventional electron beam lithography. This process is described in the letter reprinted in
appendix 6-B, which reports the fabrication of narrow lines and of single electron transistors.
Compared to EBL, the AFM-lithography has two advantages: Firstly, it avoids damaging the
underlying structure with high energy electrons. In particular, heterojunctions in semicon-
ductors have been reported [11] to be sensitive to e-beam irradiation. Secondly, since AFM
imaging is an intrinsically low-cost technology, AFM-lithography opens the realm of nanofab-
rication to a larger number of laboratories. The versatility of our process is further illustrated
on figure 6.5 which shows lines with a variable width obtained by laterally sweeping the tip
during engraving. Figure 6.6 shows the alignment of AFM-fabricated devices over a previously
fabricated structure consisting of gold connecting wires. The alignment accuracy is about half
a micron.

To conclude with this new fabrication method, we believe there is room for a gain in
resolution since we have engraved only a few types of resists with commercially available tips.
Since strongly sharpened tips such as those very recently obtained by Dai et al. [12] for which
a single carbon nanotube is stuck on the apex, becomes available, one should expect to obtain
narrower furrows. On the other hand, the understanding of the interaction between the tip and
the surface and, more generally, of tribology at the nanometer scale might lead to significant

improvements.

- 248 -



{SKU %12,888  ipm WDI5"

Figure 6.5 Left: AFM micrograph of a furrow engraved in soft polyimide. The broadened
extremities were obtained by sweeping the tip lateraly during engraving.

Right: SEM micrograph of the Aluminum wire presenting a vartable width. It was obtained
after processing the sample which profile is shown in left.

Figure 6.6: SEM micrograph of three single electron transistors fabricated by AFM lithography.
These devices are aligned with respect to a pre-fabricated gold circuitry made by optical
lithography. The picture shows the alignement accuracy (about half-a-micron) which is
currently limited by the hysteresis of the piezo actuators monitoring the tip position.
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6.3.4 Comparison between the three processes.

The following table provides a comparison between the three processes: EBL-bilayer, EBL-

trilayer and AFM-trilayer, detailing for each process its respective pros and cons.

Bilayer technique

Trilayer technique

AFM engraving

-simplest technique
-quick and versatile
-allows easy and precise

-very robust suspended
mask
-reduced proximity

-no e-beam exposure

-proximity effect along
with e-beam exposure

-substrate polluted
during dry etching

Advantages | alignment above effect -instant, non destructive
prefabricated samples | _allows very large AFM-imaging of the
-fabrication possible on | yndercut (up to several engraved structure.
top of corrugated microns)
surfaces
-fragile mask, not -time consuming itical sing ti
suitable for complex technique ;frl-lca dprO(lzesblng e
ctructures uring development
Drawbacks

-patterning of large
surfaces is impossible

-small undercut

Table 6.7: Comparison between the three processes leading to a suspended shadow mask.

6.4 Multilayer fabrication

Until now, single electron devices are still mainly fabricated by directly depositing metallic
layers on an insulating substrate through a shadow mask in a single pump down (see for
example the first fabricated single Cooper pair box in Fig.6.4 bottom panel). Except for
the overlapping tunnel junctions, the resulting structure has a two dimensional topology: the
electrostatic coupling between electrodes takes place through planar capacitors which have
intrinsically small capacitances and relatively large cross-talk. On the other hand, wires cannot
cross without contacting each other, which severely constrains the circuit design. Thus more
complex designs require multilayered structures in which conductive layers are separated by
insulating ones [10] . Restoring the third dimension has the great advantage to relax topological
constraints. However, if one wants to recover all the features of a three dimensional network
composed of tunnel junctions, capacitances and connections, contacts between conducting
layers must be implemented by piercing vias through insulating layers (see Fig. 6.8).

We present here two methods for multilayer fabrication specially developed in our laboratory
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Figure 6.8: Example of a multilayered device showing implementation of crossings

and wvias: schematic diagram showing the principles (top) and scanning electron
micrograph of the ccrresponding fabricated sample (bottom). The device is a single

Cooper pair box capacitively coupled to an electrometer measuring the island charge.
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for single Cooper pair devices (see Chapters 2 and 3). In these methods, the chosen insulator
is respectively an organic material (polyimide polymer resist) or inorganic material (silicon

nitride). In particular, the fabrication of smooth-edged vias requires a specific process.

6.4.1 Principles of the process

In a single electron device, only tunnel junctions and islands require sub-micron fabrication.
Our idea was to separate these components requiring the best resolution provided by e-beam
lithography from others which have less critical resolution requirements such as gate capaci-
tances and connecting circuitry. We therefore decided to fabricate the latter components on a
separate layer using standard ultra-violet optical lithography which has the great advantage
to process many samples on a single silicon wafer ”in parallel”. Electron beam lithography
is on the contrary basically a ”serial” fabrication technique, since the beam scans all the ex-
posed zones line after line. For the exposure of large areas such as connecting pads, EBL is a
time consuming method, which motivated our decision to replace it by an optical lithography
step.

The main steps of our hybrid Optical/EBL multilayer process, described in the following, are
sketched in Fig. 6.9. The corresponding technical procedures are detailed in appendix 6—C.
We first pattern on a whole 2-inches silicon oxidized wafer and using lift-off optical lithography,
a circuitry consisting of gold leads (step 1). We cover the sample with an insulating resist (step
2) which will separate the upper conductive layer from the lower one and provides a planar
layer of typical rugosity less than 10nm for the following metal depositions. The vias to the
gold circuitry are fabricated according to the following sequence: we optically pattern small
windows aligned over the gold wires (step 3). The resulting photoresist mask is etched and
holes are opened in the insulator with diameter 1 ym (step 4). We thus uncover the gold lead
extremities except for the gate capacitances (see Fig. 6.10a). We then perform an electron-
beam lithography using a standard bilayer process (steps 5 and 6). The top level which consists
of electrodes and tunnel junctions is fabricated using double-angle evaporation of aluminum
through a shadow mask (step 7, Fig 6.10c). Junctions with typical size 0.1x0.1 um? are
obtained (see final aspect in Fig 6.10c and Fig. 6.12 bottom panel).
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Figure 6.9: Processing sequence for the multilayer technique.

Step 1) pre-fabrication of the connecting circuitry and capacitor bottom electrodes on a
oxidized silicon wafer: UV lithography, gold deposition and lift-o ff.

Step 2) deposition of the insulating layer (polyimide or silicon nitride).

Step 3) aligned UV lithography of the via pattern.

Step 4) holes etching in the insulating layer for fabrication of vias.

Step 5) Bilayer resists spin coating and baking for EBL.

Step 6) EBL step: electron beam exposure and development of the suspended mask.

Step 7) Deposition of the islands, tunnel junction and gate capacitor counterelectrodes.
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Figure 6.10: Scanning electron micrographs of a typical multilayered sample fabricated
using polyimide as the insulating layer, and observed at different fabrication steps.

a) Sample at step 4 showing the smooth edged holes pierced through the insulator
uncovering gold leads for vias fabrication.

b) Sample at step 6 showing the aligned bilayer mask suspended over the polymide
(partly damaged during the SEM observation).

c) Fully processed sample. The device at bottom right (enlarged in figure 6.13) is a
single electron transistor measuring the charge of a single Cooper pair box (top left)

with its long, "I"-shaped island.
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Figure 6.11: Scanning electron micrographs of holes pierced through the insulating layer
showing the problems encountered for via fabrication.

a) Dry-etched hole in silicon nitride. the vertical edges obtained even wusing isotropic
etching in a high pressure plasma will not preserve the electrical continuity of further
metalic layer deposited on top.

b) Holes of the previous sample after exposure in a diluted solution of fluoridric acid.
The profile is less steep but the remaining sharp edges make this technique not suitable
for via fabrication.

¢) Dry—etched hole in polyimide. The smooth profile of the photoresist is transferred
during the dry-etching thus preserving the electrical contact of the layer deposited on top.
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6.4.2 Deposition of insulating layers

As previously mentioned, we have tried two kinds of insulating layers selected for their
good insulating properties: polyimide and silicon nitride. Deposition of these layers requires
completely different processes that are detailed in appendix 6—C. Both materials have the
same dielectric constant ¢, ~ 3.6 and the deposited layers lead to high breakdown voltages:
polarization with voltages up to several volts across half-micron-thick layer does not lead to
any damage for the device. Furthermore, half-micron thicknesses of polyimide are sufficient
to planarize the surface, thus erasing the height contrast generated by the bottom conductive
layer (see Fig.6.14 top panel). Such a good planarization cannot be obtained with silicon
nitride deposited either using a chemical vapor deposition process® or by plasma sputtering
(see Fig. 6.14 bottom panel).

A key point when one introduces new insulators in single electron device fabrication is to
check that the charge noise generated by these marerials is low enough. We have found that
polyimide and silicon nitride are “quiet” insulators in the sense that they do not increase the
noise level of an electrometer when compared to conventionally fabricated samples on silica:

a complete discussion of this issue is given in Chapter 5.

6.4.3 Fabrication of vias

Via fabrication implies the piercing of the insulating layer in precisely located places in
order to connect the two conductive layers. Since contacts between conductive layers are made
by thin evaporated metalic strips through holes of 1-um radius, the electrical connection is
not straightforward. To ensure electric continuity between layers, the holes must have smooth
edges and be clean in the bottom. Such smooth edged holes were only obtained using polyimide
layers (see Fig. 6.11 bottom panel and process details in appendix 6-C) despite numerous trials
of silicon nitride etching processes (see Fig. 6.11 top and middle panels). One-micron-wide
holes are pierced through polyimide thus uncovering the bottom gold connecting circuitry.
This gold surface is then cleaned by argon ion-milling prior to deposition of the bilayer resist

for subsequent electron beam lithography.

2 Technical support from Balzers is gratefully acknowledged for providing us the CVD deposited silicon nitride samples
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vias made by alignment marks
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connecting
leads

insulating substrate

Figure 6.12: Pictures showing alignments results per formed at both optical lithography and electron
beam lithography stages.

Top: UV lithography alignment. scanning electron micrograph of a sample for multilayer fabrication
shown at step 4 (left) and its corresponding schematic drawing (right). the alignment accuracy of

the patterned hole with respect to the lead is about half a micron. Notice the alignment marks
which are used for this alignment and also during EBL to position the SET device with respect to

the structure underneath.
Bottom: EBL alignment. Scanning electron micrograph of a multilayered single electron transistor
after full process. Tunnel junctions are shown the two bright dots. The alignment accuracy of the
top structure (island in the center of the picture) with respect to the bottom gold layer (blurred bright
finger) is better than 0.2 yum).
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The respective advantages and drawbacks of the two kinds of insulators are summarized in

the following table:

Insulating layer Silicon nitride (Si3N 4) Polyimide
ehard insulator with high * easy to spin
breakdown field * provides good planarization
Advantages «low residual rugosity * isotropic dry-etching gives
e suitable for ultrasonic bonding SI.HOOth edges suitable for
vias.
« no planarization emust be annealed at 350°C
Drawbacks « sharp efiges when .etched *too soft for enabling
(not suitable for via ultrasonic bonding.
fabrication)

Table 6.13: Comparison between the two materials tested as insulating layers.

6.4.4 Alignments of layers

Multilayer fabrication requires accurate alignment of layers with respect to each other at
each deposition step. The accuracy depends on the device parts: half-micron accuracy is
sufficient for aligning via holes over the gold circuitry (see Fig 6.14 top right). Therefore this
alignment can be performed using the micrometric screw of the UV lithography mask aligner
(see Fig 6.12 top panel). For the top layer however, one must align the single electron device
above the gate electrode with the best resolution available. This last layer being fabricated
using electron beam lithography, the alignment procedure is not straightforward since one
cannot image the sample without exposing the resist. This alignment is performed in two
steps. First, a coarse mechanical alignment is provided: the sample is shifted away from the
center of the electron beam column and the center position is calculated after measurements
of the coordinates of pre-alignment crosses at the sample edges. The average accuracy of
this alignment step is about 3 ym. The second step consists in imaging alignment crosses by
scanning small areas at the edges of the exposure field®. Since the sample has been pre-aligned,

crosses are found inside the imaging field (with about 3 pm misalignment). The relative

3 This precise alignment is performed using the Proxy-writer alignment procedure developped by Raith GmbH.
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Figure 6.14 AFM (left column) and SEM (right column) micrographs of two fully processed multilayer single
electron devices using respectively polyimide (top panel) and silicon nitride (bottom panel) as insulating layers.

Vias with smooth edges could be only implemented using polyimide whereas "buried’ gates electrodes

(diagonal fingers) have been fabricated using both techniques. These 50nm-thick electrodes have almost
completly dissapeared on the AFM image (top left) for the polyimide sample thus showing the per fect

planarization provided by spin-coating of a half-micron-thick polyimide layer. For the same thickness of
sputtered silicon nitride, no planarization effect is observed, as showed in bottom left picture.
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dielectric 2 (Silicon oxide)

Figure 6.15. Drawings showing the integration of shielded lines on-chip
approximating a coaxial line, (schematics in left). The insulator above the strip-line

1s the insulating layer whereas the oxidized silicon substrate plays the role of the
bottom insulator.

to bias and

measuring apparatuses
/

Ultrasonic bonding
On-chip
capacitance

(1nF range)
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St

Insulating layer (silicon nitride)
single electron device

Figure 6.16. Controling the electromagnetic environment of single electron devices
requires implementing dissipative elements wvery near the tunnel juntions. The
picture shows how can overlap capacitors and strip line resistors can be integrated on-
chip.
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misalignment is measured for the four crosses and the beam-monitor computer calculates
both translation and rotation corrections in order to properly shift the electron beam during
exposure. Such a fine geometric compensation performed by the digital to analog board is
efficient only if one images the alignment marks with the same current as for the exposure
since the electron beam shifts with the current. The overall alignment accuracy is then of the

order of 100 nm (see Fig. 6.12 bottom panel).

6.4.5 Customizing the electromagnetic environment

Multilayer fabrication also provides the opportunity to integrate on-chip components such
as overlap capacitors and resistances very close to tunnel junctions. Such components allow
the control of the electromagnetic environment of single electron devices. Capacitors with up
to 5 mm? area yielding to a capacitance of ~ 100 pF have been realized. On the other hand,
resistors in the range 1-1000 €2, very close to islands have been obtained. As an example,
RC circuits (see Fig. 6.16) were used to obtain large switching currents in small Josephson
junctions (see Chapter 4). Drawings of Fig. 6.15 also illustrate the fabrication of shielded lines
consisting of a strip line surrounded by ground electrodes. Such lines have been used to apply

microwave signals on gate electrodes (see Chapter 4).

6.4.6 Future possible applications of multilayer fabrication

This multilayer layer technique is also promising for the fabrication of complex structures
requiring coupling overlap capacitors. Among them, one can mention the multijunction single

Cooper pair pumps with gate capacitors addressing one column at a time (see Figure 6.17).

In all the multilayer processes mentioned above, the tunnel junctions sit on the top level:
An improvement of this multilayer technique would be to implement tunnel fabrication on
different levels. Such a project raises several problems: It is well known that metal oxide
tunnel junction cannot be exposed to the electron beam of a SEM without risking severe
damages® (such as shorts). Therefore, it seems difficult to perform a new electron beam
lithography step without destroying the junctions of the previously fabricated layers. The
AFM-based lithography, which circumvents this problem, might allow fabrication of multi

tunnel junction layers.

4 AFM imaging, on the contrary, does not lead to any noticable junction damage
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Figure 6.17. Schematic diagram of a superconducting pump composed of a series of k single-
Cooper pair pump in parallel, each pump being composed by n ultrasmall Josephson junction in
series. If the circuit is operated with gate voltages V; clocked at frequency f with relative
phase 27z/i (where 0§i§n), then the net supercurrent flowing through the whole device is
expected to be equal to : I=k(2e)f.
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Conclusion
New contributions to nanostructure fabrication

We have presented here all the processes involved in the fabrication of the nanostructures
discussed in this thesis. Apart from the state-of-the-art techniques that have been modified to

fulfill our specific needs, some new results have been obtained:

e Single electron devices have been successfully fabricated using a new fabrication technique
based on the AFM, thus avoiding the use of electron beam lithography. The present lateral

resolution obtained is 40 nm.

e Multilayer single electron devices have been obtained using organic and inorganic insu-
lating layers.

e Vias and crossings have been successfully incorporated, thus providing a large design
flexibility. The implementation of overlap capacitors increases the coupling capacitance by
typically a factor 10 with respect to a planar geometry and leads to a crosstalk reduced to
less than 10 %.

e The multilayer single electron transistors have shown no significant increase of the charge
noise level (see Chapter 5).

e Samples with shielded gates for microwave excitation have been realized.

e A controlled electromagnetic environment for the single electron devices have been im-

plemented using customized capacitors and resistors very close to the device.
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APPENDIX 6—-A

Technical data for shadow mask fabrication

1-Preparation of Bilayer resist samples

e Resist deposition

— bottom layer: copolymer polymethyl-meta-acrylate/meta-acrylate acid (PMMA/MAA) diluted at
90 g.17! in 2-ethoxyethanol, filtered with 0.2 pum teflon filters
* A spin at 2000 rpm during 40 s gives a 400 nm thick ballast. dry at 156°C for 1 minute.
— top layer: poly-methyl-meta-acrylate PMMA (molecular weight 950K) 15g.1=" in MIBK, 0.2 um
filtered with teflon filters.
spin at 1000 rpm during 40 s bake at 156°C for 15 minutes.
e Electron beam exposure
— Electrons accelerated by a voltage of 35 kV, standard dose 2 pC/um?
e development
— develop for 35 s in a solution of MIBK (methyl-isobutyl-butyl-ketone) diluted at 25% vol. in
propanol-2.
— rinse in propanol-2.

2-Preparation of trilayer resist samples

e ballast deposition

— copolymer PMMA /MAA 90 g.I"! in 2-ethoxyethanol, 0.2 ym filtered with teflon filters.
— A spin at 2000 rpm during 40s gives a 400nm thick ballast.
bake on hot plate at 156°C for 15 minutes.
e germanium deposition

— 30-50 nm of germanium are thermally evaporated on top (rate 0.2 nm/s).
e top layer electron sensitive deposition
— PMMA (molecular weight 950K) 15 g.17! in MIBK, filtered.
spin at 1000 rpm during 40 s bake on hot plate at 150°C for 15 minutes.
e clectron beam exposure

— almost the same dose as for the bilayer resist.
e wet development
— develop for 10 s in a solution of cellosolve (commercial name of glycol-ethyl-monoethyl-ether) diluted
at 30% vol. in methanol
— rinse in propanol-2.
e dry etching
— plasma etching of the germanium: SF6 5 sccm 2x10™3 mbar 10W during approx. 40-60 s.
— plasma etching of the copolymer layer: Oy 10 sccm 2x1073 mbar 100 W during 8-10 min.
e underetch: 2 possibilities depending in the desired undercut:

— dry underetch (classical): isotropic oxygen plasma 0.11 mbar 15 W during 10 min.

— wet underetch (for large undercut): 20-80 s in MIBK-propanol-2 at 20°C. A 80 s treatment gives a
1.2 pm edge to edge undercut. This wet underetch must be followed by a dry-etching in order to clean
the remaining polymer sticking to the edges of the mask.

% Etching parameters: Oz 10sccm 2x 1073 mbar 100 W during 5 min.
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e-beam resist PMMA——,, 50 nm
MAA ballast ——» 0.2-0.5 um

oxidized silicon substrate—""

Schematic cross section of a bilayer for e-beam lithography

e-beam resist PMMA ~ 50 nm
Germanium —¥ — 25.50nm
MAA ballast — 0.2-0.5 um

Silicon oxide substrate —%

Schematic cross section of a bilayer for e-beam lithography
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Important notice: The trilayer process is somewhat more difficult to realize than the bilayer.
One should pay attention to the following recommendations that can avoid frequent problems:
1) DO NOT bake the wafer at two high temperature because internal stresses between layers
might occur, leading to typical circular breaks in the thin germanium layer. A safe method is
to bake the sample using decreasing temperatures (150°C the second time).

2) The first dry-etching step in SFg must be long enough to clean all germanium deposits on
the substrate. It is extremely helpful to monitor the etching rate by laser interferometry.

3) Deposits remaining from the copolymer etch might lead to a pollution of the bottom silicon
substrate. We suspect these deposits (probably carbon particles) to contaminate the tunnel

junction barrier and make it more fragile.

3-Preparation of AFM-etched samples
e See the article ”Lift-off lithography with an Atomic Force Microscope” reprinted in the
following (appendix 6-B).
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APPENDIX 6—B

Lift-off lithography technique with an Atomic Force

Microscope

published in Applied Physics Letters 69, 3098, 1996.
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Lift-off lithography using an atomic force microscope.

V. Bouchiat and D. Esteve
Service de Physique de I’Etat Condensé, Commissariat a

I’Energie Atomique, 91191 Gif-sur-Yvette Cedex, France

Abstract

We present a technique to fabricate nanostructures with an atomic force mi-
croscope (AFM). By taking advantage of the AFM tip sharpness, we engrave
a narrow furrow in a soft polyimide layer. The furrow is then transfered us-
ing dry-etching to a thin germanium layer which forms a suspended mask.
Metallic layers are then evaporated through this mask. Metallic lines with
a 40 nm linewidth and single-electron transistors have been fabricated. This
lift-off technique can be used on any substrate and allows easy alignment with

previously fabricated structures.

PACS# 7335, 7340G, 6116P, 8160

published in Applied Physics Letters (Nov. 96).
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The observation of conductance quantization [1,2], the controlled transfer of single
electrons [3] and the realization of almost perfect 2-dimensional atoms [4] are recent examples
of experiments involving nanostructures. Such results could be obtained because electron-
beam lithography (EBL) has made sub-100 nm scale fabrication easily accessible. Although
high energy EBL reaches a resolution better than 10 nm [5], there is a need for simple
fabrication techniques in the sub-50 nm range. The atomic resolution imaging achieved by
proximal probe microscopy has risen hopes that such alternatives to EBL do exist. Indeed,
a variety of techniques have been developed [6], culminating with the direct manipulation of
atoms [7] and molecules [8]. Most of these techniques take advantage of the spatial resolution
of the electronic emission from a tip to locally expose ultra-thin electron resists [9], such
as self-assembled molecular monolayers [10] or Langmuir-Blodgett films [11], or to directly
modify the structure of the superficial layer [12], such as the oxidation of hydrogenated silicon
[13]. A few methods based on mechanically engraving a soft layer with a sharp atomic force
microscope (AFM) tip have also been proposed [14]. In particular the PMMA resist bilayer
process, commonly used in EBL, has been directly adapted [15]. We demonstrate in this
paper the adaptation of the (PMMA/MAA [16]-Ge-PMMA) trilayer process [17], in which
the intermediate germanium layer forms a suspended mask. The main advantage of this
process is to provide a rigid mask allowing large free-standing areas. The combination of
multiple angle evaporations of various metals required to fabricate nanostructures combining
narrow wires, small contacts, tunnel junctions or other elements, is then possible. We
illustrate the versatility of the technique by fabricating a single-electron transistor (SET)
aligned with previously deposited contacts. We have operated at low temperature and
characterized this basic circuit of single electronics.

In the usual trilayer process, the pattern, created by e-beam exposure in the top PMMA
layer, is transferred using dry-etching to the intermediate metallic layer to form a suspended
mask; further dry-etching of the bottom layer provides the necessary undercut for proper lift-
off after evaporation of metallic layers through the mask apertures. In the present process,

depicted in FIG. 1, the top resist is replaced by a soft polyimide layer in which an AFM tip

- 271 -




Engraving

polyimide
/ germanium
PMMA-MAA
S gold pad
— Si ox. substrate
furrow\ dry etching suspended mask
15-20nm _ ) \
5157 T ———
0.2-0.3 um
deposition
lift-off % /
T
=
v 7 7

Figure 1: Main steps of the AFM-based trilayer process.
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engraves a pattern of narrow furrows. Subsequent dry-etching steps are similar.

We first pattern on an oxidized silicon wafer the gold contacting circuitry by optical
lithography. A gold thickness larger than 10 nm ensures that the contacting pattern is
observable by scanning the sample surface with the AFM prior to engraving it, thus allowing
easy alignment. This thickness should however be less than 50 nm in order to avoid large
steps and ripples on the sample surface. A PMMA-MAA copolymer buffer layer with a
thickness equal to the desired height for the suspended mask (200-300 nm) is then spun
and baked. A germanium layer with a thickness in the 5-15 nm range is then thermally
evaporated on top. At this stage, the wafer is diced, after which each chip is processed
separately. Prior to engraving a chip, a thin polyimide layer with a thickness in the 15-20
nm range is deposited. Such a thickness insures that the furrows are deep enough to transfer
the pattern properly during the subsequent dry-etching steps. Thin polyimide layers are
obtained by spinning a highly diluted solution of polyimide (Dupont PI-2610) in N-methyl-
2-pyrrolidinone (NMP). The solvent is removed by drying the chip on a hot plate at 60°C.
The chip is then placed in an AFM equipped with a rigid and sharp silicon tip (L=125 pm,
k ~ 5 N.m™! from Nanoprobe). The top surface is imaged to allow a precise alignment with
the underlying pattern. Engraving is done by pushing the tip (see FIG. 1) at a velocity in
the 0.2 — 2 pum.s~! range with an applied vertical force in the 1.5-3 uN range, higher speeds
requiring larger forces.

One should take care not to scratch the solid Ge mask in order to preserve the tip
sharpness. An AFM image of a typical 50 nm wide furrow taken with the same tip as for
engraving is shown in FIG. 2a. It displays a constant profile without any irregularity in the
edges: polyimide appears to be a well suited material for engraving. Such a regularity is
however not found if the tip is pulled, or pushed at angles exceeding 40° with respect to
the cantilever axis, due to cantilever torsion by the asymmetric drag force. The obtained
furrow profile is determined by the tip sharpness close to its apex, which is the main present
limitation to the final line width. Fine control of the gap between two furrow ends (see

FIG. 3a) is required to fabricate tunnel junctions by evaporating at two angles through the

- 273 -




Figure 2 (a): AFM image of a furrow engraved in polyimide. Note that the profile shown
in inset, obtained by scanning with the scribing tip is somewhat broadened by the finite
tip radius.

(b): Scanning electron micrograph after deposition of 30nm of Gold through the
corresponding mask.
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suspended mask. Small positioning corrections need to be applied in this case in order to
compensate the cantilever flection under the effect of the applied force and of the drag force.
Furrows up to 500 nm-wide can be obtained by laterally sweeping the tip while pushing it.

The reactive ion etching (RIE) of the engraved chip is then done in three steps. A first
etching is performed in a low pressure (0.002 mb) SFg plasma in order to transfer the furrow
to the Ge layer. The etching rate ratio between PI and Ge measured by laser interferometry
is equal to 0.3, which allows a reasonable latitude in the adjustment of the etching time. The
second and third RIE steps are done in an O, plasma, at respectively low (0.002 mb) and high
(0.11 mb) pressures. The low pressure RIE leads to anisotropic etching of the PMMA-MAA
ballast down to the substrate. The high pressure RIE provides isotropic etching and creates
the undercut required for the angle evaporations. It is worth noticing that the transfer of
the furrow pattern onto the Ge mask is realized without significant broadening.

We then proceed to the angle evaporation of one or several metallic layers through
the suspended mask in an electron-gun evaporator. Tunnel junctions are obtained by in-
situ oxidation of an aluminum electrode prior to the deposition at a different angle of a
counter-electrode. The height-width aspect ratio of the deposited lines is only limited by the
obstruction of the mask due to the evaporated materials sticking on the mask edges. Finally,
the Ge mask and the ballast are lifted-oft in hot acetone.

FIG. 2b displays a scanning electron micrograph of a gold line deposited after etching
the furrow shown in FIG. 2a. The line is very regular with a 40 nm line width. Electrical
continuity has been checked on 50 pm-long Al lines connected to 50 nm-thick gold pads.

Combination of evaporations at different angles allows one to fabricate various types
of devices. In order to illustrate the versatility of the technique, we have fabricated Single
Electron Transistors (SET) which are the basic circuits of single electronics. A SET consists
of two non-superconducting tunnel junctions in series, with a small intermediate electrode
(island) capacitively coupled to a gate electrode [3]. At temperatures such that kpT < E, =

e2

55> Where e is the electron charge and C' the total island capacitance, the current flowing

through the device is periodically modulated by the gate voltage V. The period corresponds
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Island
100 nm

Figure 3 (a): AFM image of the pattern engraved in polyimide for fabricating a
SET. (b): Scanning electron micrograph of the SET device after fabrication.

- 276 -




to one extra electron charge induced on the island by V.

Both the device and the gate electrode have been fabricated using AFM lithography. The
AFM image of an engraved pattern and the Scanning electron micrograph of the resulting
SET are shown in FIG. 3. The two overlapping Al/AlO,/Cu tunnel junctions have been
obtained by two angle (£15°) evaporations of Al and Cu. A series of V-V, modulation
curves obtained at 30mK are shown in FIG. 4. The charging energy E./kp deduced from
the I-V is equal to 0.7 K. The device characteristics are completely similar to those of SET's
fabricated using EBL [3]. AFM lithography has the advantage of avoiding deterioration of
fragile underlying structures by e-beam exposure. In particular, defects in 2D electron gases
have been reported to be a consequence of the EBL exposure.

In conclusion, the AFM-based trilayer lift-off technique presented in this work is a general
purpose nanofabrication technique with alignment capability. It already offers an alternative
to standard electron beam lithography in specific cases. Further progress in the tip sharpness
could bring the linewidth under the presently achieved value of 40 nm.

We thank G. Faini and C. Vieu for SEM imaging.
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Figure 4: Modulation curves of the output voltage V of the SET at 20 mK
as a function of the gate voltage Vg for different bias currents.

Inset: Extremal I-V characteristics of the SET.

- 278 -




REFERENCES

[1] B. J. Van Wees, H. van Houten, C.W.J. Beenaker and J.G. Williamson, Phys. Rev.
Lett. 60, 848 (1988)

[2] D. A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F frost, D.G.
Hasko, D.C. Peakcock, D.A. Ritchie, G.A.C. Jones, J. Phys. C21, L209 (1988)

[3] for a review see Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostruc-

tures, ed. by H. Grabert and M. H. Devoret, NATO ASI Series 294 (Plenum, 1992)
[4] L. P. Kowenhouven, private communication.
[5] W. Chen and H. Ahmed, Appl. Phys. Lett. 62, 1499 (1993)
[6] Technology of prozimal probe lithography, ed. by C.R.K. Marrian (SPIE 1993)

[7] D. M. Eigler and L. K. Schweizer, Nature 344,524 (1990); C. Lebreton and Z. Z. Wang,
Scanning Micr. J., 8, 441 (1994)

[8] P. H. Beton, A. W. Dunn, and P. Moriarty, Appl. Phys. Lett. 67, 1075 (1995)

[9] C. R. K Marrian and E. A. Dobisz, J. Vac. Sci. Technol. B10, 2877 (1992); A. Majumdar,
P.I. Oden, J. P.Carrejo, L.A. Nagahara, J.J. Graham and J. Alexander, Appl. Phys. Lett.
61, 2293 (1992); S. W. Park, H.T. Soh, C.F. Quate and S.I. Park, Appl. Phys. Lett. 67,
2415 (1995); K. Kragler, L.E. Giinther, R. Leuschner, G. Falk, A. Hammerschmidt, H.
von Seggern and G. Saemann-Ischenko, Appl. Phys. Lett. 67, 1163 (1995)

[10] C. R. K. Marrian, F.K. Perkins, S.L. Brandow, T.S. Koloski, E.A. Dobisz and J.M.
Calvert, Appl. Phys. Lett. 64, 390 (1994); A. Kumar, H.A. Biebuyck, N.L. Abbott and
G. M. Whitesides, J. Am. Chem. Soc. 114, 9188 (1992)

[11] L. Stockman, G. Neuttiens, C. Van Haesendonck and Y. Bruynseraede, Appl. Phys.
Lett. 62, 2935 (1993)

[12] T. Thundat, L.A. Nagahara, P.I. Oden, S.M. Lindsay, M.A. George, W.S. Glaunsinger,

- 279 -




J. Vac. Sci. Technol. A8,3537 (1990) ; ; S. C. Minne, H.T. Soh, P. Flueckiger and C.F.
Quate, Appl. Phys. Lett. 66, 703 (1995) ; T. Hattori, Y. Ejiri, K.Saito, M. Yasutake, J.
Vac. Sci. Technol. A12, 2586 (1994)

[13] J. A. Dagata, J. Schnier, H. H. Harary, C. J. Evans, M. T. Postek and J. Bennet, Appl.
Phys. Lett. 56, 2001 (1990) ; N. Kramer, H. Birk, J. Jorritsm, C. Schénenberger, Appl.
Phys. Lett. 66, 1325 (1995)

[14] N.B. Larsen, T. Bjornholm, J. Ganaes, J. Larsen and K. Schaumburg, Ultimate Limits
of Fabrication and Measurement, ed. M. E. Welland and J. K. Gimzewski, Kulwer Acad.
Publ. (1995)

[15] L. L. Sohn and R.L. Willet Appl. Phys. Lett. 67,1552 (1995)
[16] PMMA/MAA is a copolymer polymethyl methacrylate/ methacrylic acid

[17] J. Romijn and E.Van der Drift, physica B 152,14 (1988)

- 280 -




APPENDIX OF CHAPTER 6

APPENDIX 6-C
Technical data of multilayer fabrication (p. 253)

Multilayer fabrication process involves 7 steps: Step 2 to 4 depend on the nature of the insulating material
(organic or inorganic).

STEP 1 Patterning gold leads using UV-lithography

On a 2-inches silicon oxidized wafer,we spin photoresist Hoechst AZ-5206 at 7000 rpm and hard-bake

5 minutes at 97°C. A chromium mask patterned on quartz is used on a Karl Suss mask aligner. We
develop in AZ351 during 15-20 seconds. We then evaporate 2 nm of titanium (sticking layer for gold) and
then 50 nm of gold in a Joule evaporator. The resist is lifted-off in acetone.

A- Polyimide resist as the insulating layer

STEP A-2 Spin-coating of the polyimide resist

We use Dupont PI-2610 polyimide resist whose viscosity is reduced by dilution in N-methyl-2-pyrrolidinone
(3 kg of PI per liter of NMP). (parameters of spin are 5000 rpm, 30s, 0.5 gm thick). We carefully perform
a heating process using hot-plates: We first gently hard-bake the wafer 2 minutes at 100°C and then bake
it in vacuum during one hour at 350°C.

STEP A-3 Patterning holes over the polyimide

We spin photoresist AZ-5206 over the polyimide (7000 rpm for lminute, ~0.4 pm thick) and hard-bake
5 minutes at 97°C. Aligning the mask with small windows over the extremities of the gold leads is a
critical step in this process: the allowed misalignment is about 0.5 gm. We then under-expose the resist
(16-17 seconds). Some photoresist still subsists at the bottom of the patterned holes after development in
AZ-351. The developed resist is then hard-baked 15 minutes at 160°C in order to form a smooth profile
for the edges.

STEP A-4 Etching the polyimide resist

The smooth patterned profile in the photoresist is transferred to polyimide using reactive ion etching
(R.ILE.). The plasma consists of a mixture gas SFs/O2 with respective proportions 5 sccm/50 scem at
total pressure 0.3 mbar. The RF parameters are 50 W, 67 V.

We monitor the etching by measuring the interference fringes of a reflected laser beam focused in a etched
hole (about 3 to 4 minutes of etching). The sample is then washed in acetone using ultrasonics. Gold
leads appearing at the bottom of the holes are cleaned during 10 seconds under a low energy Argon ion
milling .

Silicon nitride as the insulating layer

STEP B-2 Deposition of SigNslayer

The layer is deposited by reactive magnetron sputtering using a silicon nitride target in a Ar/Ny plasma.
The deposition parameters are:

— distance target-sample: 10 cm
— pressure 2x10~* mbar No+ 8x10~* mbar Ar.
Autopolarization voltage: 650 V
— Temperature of the sample: 240°C.
— deposition rate: 1um per hour.
STEP B-3 Patterning holes: see step A3 above.
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STEP B-4 Etching the SizNy layer.

The silicon nitride layer is pierced using two steps of reactive ion etching (RIE):

First, 80 % of the total thickness is etched at a high etching rate (40 nm/min) using a CHF3/0O4 plasma
and a large autopolarization voltage (typically 240 V) of the sample.

Then the remaining thickness is removed at a lower etching rate in order to prevent physical sputtering
of the gold layer which is uncovered at the end ; a SFg plasma and a low autopolarization voltage (below
30 V) are used.

STEP 5 Preparing the e-beam resist

A standard bilayer resist is used: The bottom ballast layer is made of copolymer (90 g.I"1 MAA). We spin
it at 2000 rpm for 30 seconds. This layer is hard-baked 10 minutes at 155°C in order to stretch the film
and avoid thickness variations near the connecting holes.

The top layer is then prepared. We use PMMA (polymethyl-metacrylate) diluted in MIBK (methyl-
isobutyl-butyl-ketone) (15 g.1=* PMMA) spun at 1000rpm. We finally hard-bake the wafer at 155°C for
15 minutes.

STEP 6 E-beam lithography

The sample is exposed to 35 keV electrons in an scanning electron microscope which beam position is
controlled by a PC connected to a DAC board (Raith Proxy-Writer system). The typical exposure dose is
around 2 pC/um?.

STEP 7 Shadow mask evaporation

The sample is developed in MIBK /propanol in proportions 1:3 during 35 seconds at 20°C.

An undercut is obtained. We finally proceed to an evaporation at two angles (-9/49 degrees) of aluminum.
An oxidation process is performed between the two evaporations with a controlled pressure of a mixture
gas oxygen/argon (20% Oz) (typically 3 mbar, 5 minutes). Final lift-off of the bilayer is performed in
acetone at 40°C.
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APPENDIX 6-D
Novel Fabrication technique of Single Electron
Devices

CPEM’96 proceedings
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ABSTRACT

We present a new method for fabricating multilayer single-electronic circuits with
vias, crossings and reduced cross-capacitances. A single electron transistor (SET)
was fabricated with this method and successfully operated. Its intrinsic charge noise,

3x107* e/v/Hz at 10 Hz, matches that of other SETs.

INTRODUCTION

When single electron devices are fabricated using a single lithography step, the
electrostatic coupling takes place through coplanar capacitors which are weak, subject
to cross-talk and not compatible with a general network topology. These drawbacks
have motivated the fabrication of multilayered circuits with overlapping capacitors
[1]. Moreover, implementing with only two conductive layers all the features of a three
dimensional network (composed of tunnel junctions and capacitances), necessitates
an insulating spacer pierced in some points for connections (i.e. vias).

We present here a method for fabricating single electronic devices enabling crossings

and vias. In our process, insulating layers are made of polyimide films.

FABRICATION

In the first step, we perform an optical lithography of the connecting circuitry
and of the gate electrodes. In our case, we evaporate 50nm of gold onto an oxidized
silicon wafer.

In a second step, we spin a polyimide resist over the sample. Its final thickness
after a 1 hour vacuum hardbake at 350°C is 0.4pum. We then open by reactive ion
etching 1um? large windows through the resist, thus uncovering the connecting leads.
The etching parameters are chosen in order to obtain smooth enough window edges
thereby enabling electrical continuity when the upper layer is evaporated.

The third step is a standard (MAA/PMMA bilayer) electron-beam lithography of

the tunnel junctions defining the core of the device. This step requires an alignment
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with 0.1um accuracy before exposure to ensure a correct positioning of the contacts
and of the islands between junctions with respect to the windows and the buried gates.
Finally, 0.1x0.1um? Al/AlO, /Al tunnel junctions are fabricated by evaporation at

two angles through a shadow mask (see Fig. 1).

F1a. 1. Scanning electron micrograph of a typical sample. The bright fingers are gold leads
and gates under the polyimide film. Windows through the polyimide appear as circular
black holes. Junctions and parts of the island lie over the two gates. The device consists
of an electrometer (bottom right) which measures by its long thin strip shaped island the

charge of an electron box (upper left).

NOISE CHARACTERIZATION

We have tested our process by fabricating and operating a single electron tran-
sistor (Fig. 1). This device is known to be the most sensitive electrometer [2] (see
Fig. 2). Any variation in the electrostatic field near the island of the electrometer
due to the motion of charges in the lower layers [3,4], induces a polarization charge

Qn, the so-called charge noise of the electrometer. The noise q,, determines the de-
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tection limit of the electrometer. Therefore, a question about our new device arises
: Is an organic film such as the polyimide a sufficiently ”quiet” substrate for single
electronics ?

To answer this question, we have measured the noise power spectrum of the elec-
trometer designed to measure the charge in an electron box. Noise measurements were
made in a dilution refrigerator at 20mK at a constant current bias I, maximizing the
sensitivity 0V/0q of the electrometer. Each line connecting the device to the appa-
ratus at room temperature was carefully filtered using miniature cryogenic filters [5].
Since we wanted to characterize the low frequency part of the noise we had to reject
the 1/f noise generated by the amplifiers. Using a lock-in technique, the charge noise
was shifted to higher frequencies at which the amplifier noise is orders of magnitude
lower.

The charge noise spectrum S, shown on Fig. 3 displays a 1/f dependence. This is
in agreement with the fact that the noise is generated by a collection of charge traps
in the substrate, each trap emitting a telegraphic noise with distributed switching
times [6].

The noise level at 10Hz is equal to 3x107%¢/ VHz. Despite the large area of the
electrometer island (10 x 0.1pm?), this value is of the same order of magnitude as
those currently reported for electrometers fabricated on various kinds of inorganic
substrates.

In conclusion, we have developed a new method for fabricating multilayer single
electron devices enabling full 3D features without increasing the noise level. It enables

the fabrication of more complex circuits such as Cooper pair pump arrays.
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APPENDIX 6-E
Fabrication diagram of the processing sequence
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Figure 6.18: Diagram showing the fabrication process and feedback corrections
after sample characterization.
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APPENDIX OF CHAPTER 6

APPENDIX 6-F
Tunnel junction resistivity data
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Figure 6.19: Resistances measured at room temperature of Al/AlOx/Al tunnel
junctions fabricated using in-situ oxidation with a gas mixture O,/Ar (15% O,).

The obtained resistances are plotted as a function of the time of oxidation for
ncreasing gas pressures. Left axis labels indicates the measured resistance
normalized to the junction area (Error bars correspond to the area uncertainty).

Right axis labels gives the resistance for a typical junction (0.09x0.11um?). Dashes
are just guidelines for clarity.
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General conclusion

In this thesis work, we have presented an experimental approach of charge quantum fluc-
tuations in single electron and Cooper pair circuits. For single electron devices, quantum
fluctuations of the charge are governed by the ratio of the tunnel junction conductance to
the conductance quantum e?/h. By measuring extremal conductances of a series of SETs, we
have observed that Coulomb blockade is progressively washed out and shifted to lower tem-
peratures when the tunnel junction conductance is increased. Our experimental results show
in particular that the renormalization of the effective charging energy of an island increases
with the strength of tunneling.

In single Cooper pair devices, quantum fluctuations of the charge are determined by the
ratio of the Josephson energy to the electrostatic energy. When both these energies are of the
same order of magnitude, two charge states differing by one Cooper pair can coexist quantum
mechanically. In the superconducting box experiment, the ground state is a macroscopic
coherent superposition of charge states differing by one Cooper pair. However, such a coherent
state which was observed at low temperature is somewhat fragile and can be “poisoned” by
out-of-equilibrium quasiparticle excitations. We have found that quantization of the island
charge in multiples of Cooper pairs is suppressed for substantial Josephson couplings.

We have then shown that this interplay between Josephson and charging energies can
be extended to more complex single Cooper pair devices involving several superconducting
islands, in which one could hope to probe excited states. Quantum states in this more elaborate
systems are expected to be more robust with respect to decoherence since they are not directly
coupled to dissipation in the environment.

In the course of this research, we have developed new fabrication techniques that are now
sufficiently advanced to allow the design of complex multilayered circuits. In particular, these
techniques lead to the optimization of electrostatic couplings between electrodes. They could
be applied to the fabrication of single Cooper pair arrays which would be operated as “pumps”.
One can conjecture that the quantum delocalization of Cooper pairs in complex arrays could
be used to circumvent the random gate voltage shifts due to offset charges. This would open
the possibility to increase substantially the current delivered by the current standard based

on the single electron pump.
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Index of variables and acronyms

am :  annihilation operator of the harmonic oscillator of index m af, : creation operator
of the harmonic oscillator of index m

¢y - fermionic annihilation operator for a quasiparticle of spin ¢ in the eigenstate [
T

Cop -

fermionic creation operator for a quasiparticle of spin ¢ in the eigenstate [

e : charge of the bare electron

fr, fr: superconducting density of state on the left (resp. right) side of the junction

g : tunneling strength parameter: Ry /47 Ry

h :  Planck constant

h.c. : hermitic conjugate

h: h/2m

hpn : reduced hamiltonian matrix element

kp : Boltzmann constant

n : excess charge number in the island (in units of Cooper pairs except in chapter 1: in
units of electrons)

|n) :  quantum charge state of the bare Josephson junction

(n) : average excess charge number in the island

ng : gate charge number

no : reduced gate voltage for single electron devices: C,U/e representing the effective
number of induced electrons on the gate

n.: reduced gate voltage for single Cooper pair devices: C,U/2e representing the effective
number of induced Cooper pair on the gate

ni,ng :  excess charge number in the island number 1 (resp. 2)

pi,p_ ¢ switching probability from the higher (resp. lower supercurrent)

Pn :  Boltzmann probability of having n excess electrons on the island

r: ratio of the junction areas

T displacement vector

q: excess charge of the island

Gn : charge of the SET island induced by background charge noise

q; - electrostatic charge of electrode 7

- 295 -



INDEX OF VARIABLES

S spin % vector

t : tunneling matrix element

tm : translation vector for operator D (t,,)

3 : partition function of the normal metal single electron box
AFM : atomic force microscope

BCS : Bardeen-Cooper-Schriffer theory of superconductivity

C': generic capacitance

C, : gate electrode capacitance

C;; + capacitance matrix element of indexes ;5

C; : tunnel junction capacitance

C,, : capacitance of the harmonic oscillator of index m

Cy, : total island capacitance

CVD : chemical vapor deposition

DC : direct current

D (tn,) : translation operator of vector t,, acting on oscillator m
EBL : electron beam lithography

E) (7) . local electric field at 7 from the origin

(|IE)) : quantum basis of the environment

E(n,p): electrostatic energy of the transistor in the state (n,p)
E.: charging energy of one electron in an island: €?/2Cy

E, : energy gap between neighboring charge states

E?: bare charging energy

E? . charging energy obtained from the resonances in the superconducting state
E% . renormalized charging energy

E. . effective charging energy

E, : effective energy gap

E;: Josephson coupling energy

EY: bare Josephson coupling energy

E% : renormalized Josephson coupling energy

E, (6) : energy band of index n of the Josephson junction

E (n): electrostatic energy with n excess electron in the island
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INDEX OF VARIABLES

E% : renormalized Josephson coupling energy

E, : electrostatic energy with n excess electron in the island

G : generic conductance

G/ . parallel conductance of the two tunnel junctions

Goin : minimum SET zero bias conductance

Gmax : maximum SET zero bias conductance

Gy : series tunnel conductance of two junctions in series

G renormalized series tunnel conductance

H : total Hamiltonian of the system

H, : electrostatic Hamiltonian

H;: Josephson coupling Hamiltonian of a bare junction

Henw : Hamiltonian of the environment

H;: Josephson coupling Hamiltonian of the junction embedded in the environment
Hpert = perturbative Hamiltonian

I : generic current

I.: critical current of the Josephson junction embedded in the environment
I0: critical current of the bare Jospehson junction

I, (6) - supercurrent at T' = 0 of the Josephson junction in excited state n
I(T,8): average supercurrent at finite temperature

L : generic inductance

Lesy - effective inductance of the environment

L,, : inductance of the harmonic oscillator of index m

My, My : moment of order -1 (resp. -2) of the environmnent impedance Z
N,, : number of excitation quanta in the oscillator of index m

N : operator of the number of transferred Cooper pairs through the junction
Ny,) :  eigenstate of the harmonic oscillator m with N quanta)

? r’,t) : electric polarization vector at time ¢ and at position ol

P, (T) : normalized Boltzmann factor of energy band E(n) at temperature T
R : generic resistance

RF: radio-frequency

RG: renormalization group theory.
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INDEX OF VARIABLES

RIE: reactive ion etching.
Ry : resistance quantum h/e? ~ 25.8 k)
Rt : resistance of the tunnel barrier in the normal state
Rp; : resistance of the tunnel junction number 7
(1S)) :  environment quantum basis composed of tensorial product of harmonic oscillator
eigenstates
SEM : scanning electron microscope
SET : single electron transistor
SM : sequential tunneling model
Sy © spectral density of the SET charge noise
SQUID : superconducting quantum interference device
STM : scanning tunneling microscope
T : temperature
Toe :  translation operator of one Cooper pair in the environment
T\mn . matrix element of T
U : gate voltage
Uy, Uy = gate voltage of gate electrode number 1 (resp. 2)
UV: ultra-violet
V : particle classical potential
V' : generic bias voltage
V (7) . electrostatic potential at distance o
Vi . electrostatic potential of electrode 7
Vy ©  gate voltage
Z(w): electromagnetic environment impedance
Zm(w) : impedance of the harmonic oscillator of index m
Z., . characteristic impedance of the harmonic oscillator m, 2, = \/m
«: tunneling strength parameter G,//G

*

a* : RG renormalized tunneling strength parameter

B : reduced temperature parameter 3 = (kgT)~!
v : reduced environment impedance /477/Rg

v,y switching rate from the lowest (resp. highest) supercurrent
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INDEX OF VARIABLES

0 : phase difference across the considered system

8(x) : Dirac distribution

Omn :  Kronecker symbol

€p : dielectric permitivity of vaccum

e, . relative dielectric permitivity

e : generic infinitly small number

¢ : Riemann Zeta function

0 phase difference across the environment, solution of the variational method

k : parameter of the self consistent equation

v : generic frequency

m: Pi=3.14159...

p: renormalization factor for the Josephson energy

pr,Pr . density of state at the Fermi level on left side, (resp right side) of the junction

04,0y,0, : Pauli matrices for the spin % representation

7 : characteristic time of a tunneling process 7 = RpC'

¢ : generic magnetic flux variable

¢ generalized magnetic flux quantum & /27

gm : flux operator of the fot the harmonic oscillator number m

w : generic circular frequency

wy :  resonance frequency of the harmonic oscillator of index n

I' . generic variable for tunneling rate

I'*(n),I'" (n) : tunneling rates through the junction #i with n extra electrons on the
island leading to increase (resp. decrease) the current .

A : superconducting gap, A = 180 ueV for Aluminum

A even-odd free energy of the superconducting island

AFE : free energy difference before and after a tunneling event

Aw : frequency width for which the environment impedance Z (w) is modeled by a single
oscillator

|=(t1, ..tm..)) : trial wave function of parameters ¢y, ..t,,

P : total flux operator of the environment

®y . magnetic flux quantum h/2e
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INDEX OF VARIABLES

®,,: : magnetic flux inside the loop
®.,; :  bias magnetic flux
|t} generic eigenfunction

Qo : single oscillator resonance frequency
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