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Introduction

The title "DFT for solids” does not mean that there is some specific
density functional theory for solids: DFT remains DFT (see lectures by
Prof. Julien Toulouse) but there are just specific implementations (e.g.
planewaves), specific difficulties (defects, charged systems,
incommensurate perturbations or instabilities, etc.) and specific ways of
thinking about the exchange-correlation functional (short versus
long-range screening in metals or insulators).

| Richard M. Martin

Electronic Structure

B o Electronic Structure: Basic
Theory and Practical Methods,
Richard M. Martin, Cambridge
University Press (2008).




Real systems are usually inhomogeneous

(Hohenberg and Kohn, PRB 1964)
1IV. CONCLUDING REMARKS

In the preceding sections we have developed a theory
of the electronic ground state which is exact in two
limiting cases: The case of a nearly constant density
(n=ne+(r), i(r)/ne<1) and the case of a slowly
varying density. Actual electronic systems do not belong
to either of these two categories. The most promising
formulation of the theory at present appears to be that
obtained by partial summation of the gradient expan-
sion (Sec. IT1.4). It has, however, not yet been tested
in actual physical problems.

(Kohn and Sham, PRB 1965)

In atoms and molecules one can distinguish three
regions: (1) A region near the atomic nucleus, where
the electronic density is high and therefore, in view of
case (b) above, we expect our procedure to be satis-
factory. (2) The main “body” of the charge distribution
where the electronic density #(r) is relatively slowly
varying, so that our approximation (2.3) for e is ex-
pected to be satisfactory as discussed in case (a) above.
(3) The “surface” of atoms and the overlap regions in
molecules. Here our approximation (2.3) has no
validity and therefore we expect this region to be the
main source of error. We do not expect an accurate de-
scription of chemical binding.

High density limit: kinetic energy dominates
Approximation (2.3) = local density approximation

Vil

Plot of the charge density |t/
associated with the top of the valence
bands and bottom of the conduction
bands in Germanium, a "nearly” metal
(courtesy Prof. Majewsky, Virginia U.)



Real systems are not in the low or high density limit

Standard extended condensed-matter or solid-state-physics systems are difficult
since they are not in a limit where standard perturbation theory starting from
the high or low-density limits can work "accurately” .

/"‘ Correlation energy density for the

pZ interacting electron gas as a function of
o ] the Wigner-Seitz radius (rs) which is
the radius of the gedanken sphere
whose volume is the total volume
divided by the number of electrons
(QWS = 47rr§/2 = Q/N)

correlation energy density (Harmree)
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Analytic low-density (Wigner limit where potential energy dominates) and
high-density (RPA limit where kinetic energy dominates) are compared to
"exact” numerical Quantum Monte Carlo data by Ceperley and Alder (D.M.
Ceperley and B.J. Alder, PRL 1980).



DFT/LDA charge density in inhomogeneous systems

As shown here for solid argon, with very o [PRB 57, 15293 (1998)]
inhomogeneous charge densies, the m’

DFT/LDA charge density is in excellent o
agreement with higher level approaches “

[PRB 74, 045102 (2006)].
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FIG. 2. (x) The VMC one body density matrix, pre(r.r') and
FIG. 7. Argon: density along the direction (1 10) within differ- () prssc(r.r) = proa(e.r'). in the (110) plane passing through the
ent approximations. The inset is a close-up of the region around the atoms with 1 fixed at the bond center. p is normalized such that
maximum. p(rx)=n(x). the charge density at the bond center. The silicon

atoms and bonds are shown schematically.
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Spherically averaged XC hole and the associated sum rule

The success of DFT/LDA even for highly inhomogeneous systems can be related to

the quality of the "spherically averaged” exchange-correlation hole and the fact that
the LDA XC-hole satisfies the correct sum-rule.

/dr dry P(r)pxe(r, r2) and /dl’2 pxc(ri, ) = —1.
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Exact versus LDA exchange hole for Neon atom along specific 00 0 R(-U ) 60 80
AT
directions (left) and spherically averaged (right). (Gunnarsson et al.

PRB 1079) Exact (VMC) versus LDA spherically averaged XC-hole for silicon.

[PRB 57, 15293 (1998)]



Minimal reminder: the total energy

The total energy of the system reads (atomic units: 4wep = e = h = 1):

ocep

S oo vt 1 58

ZIZJ . i —Z,
+ EXC[n] + with  V"(r) = _—
3 22 0-3 =%

with (Z),7,) the charge and position of the ions and EX[n] the
exchange-correlation energy. We recognise the kinetic energy (really

T — To+ E*® — J), the ionic (external) potential, the Hartree (classical) energy,
the exchange and correlation energy and the ion-ion Coulomb interaction.

The total energy should be that of the ... unit cell ! ‘

If you double your unit cell, you should obtain an energy twice as large.



Minimal reminder: the Kohn-Sham equation

The Kohn-sham equation, namely the effective one-body eigenvalue
equation, reads:

o2
(5374 V70) onle) = 0
with Ve (r) = Ver(r) + VH(r) + VX¢(r), and:
> Vion(y ) = ZJ(— J)/|7s — r| the ionic (external) potential,

» VH(r) = [dr'n(r')/|r — ¥'| the Hartree potential,
> VXC(r) = EXC[n]/an( ) the exchange-correlation potential.

with (Z,,7) the charge and position of the ions and EX¢[n] the
exchange-correlation energy. We use atomic units, namely
dreg=e=h=1.



Minimal reminder: second formulation of total energy

We can also observe:

ocep ocep occp

den=> < ¢ulf¢n> Z < ol —— |¢n
+/dr n(r) (Vo(r) + VH(r) + VX(1)),

with: >"°“P|¢,(r)|? = n(r), so that the total energy reads:

Eo(ffsn—// |r_r,| + EXC — /drn(r)VXC(r)

with:  VXC(r) = OEXC/On(r).



The plane wave formalism

The planewave formalism, namely the use of planewaves (PWs) as a
basis, is certainly the most widespread technique in codes dedicated to
deal with solids and periodic boundary conditions. In the field of
solid-state physics, it comes however after other pioneering approaches
such as the muffin-tin approach (total energy calculations by DeCicco et
al. in 1965) where the space was paved with non-overlapping spheres and
a spherical basis was adopted within the spheres, opening the way to the
modern FLAPW techniques.

Planewaves offer a more systematic and unbiased way of describing the
variations of the wavefunctions, density, potentials, etc. in space.
Further, planewaves are very naturally associated with the Bloch theorem
and the Fourier series we have seen for a periodic object.

A standard original article for learning in more details the PWs formalism
combined with DFT is: " Momentum-space formalism for the total energy
of solids”, J. Ihm, Alex Zunger and Marvin L Cohen, J. Phys. C: Solid
State Phys., Vol. 12, 1979.



The Fourier transform properties

Fourier transform of a periodic function, with Q the crystal volume and
{G} the reciprocal lattice vectors:

f(r)=>) f(G)e'®" and f(G):l f(r)e "Crdr
2 2/

Several important properties can be exploited:
> plane waves are orthogonal: [ e/ (6~¢)"dr = Q5(G, G')

» the Fourier transform of a convolution product is a direct product:
1 .
g / dre”G"/dr' f(r)g(r—r") = Qf(G)g(G)

» Parseval's relation (f and g have the lattice periodicity):

[1st)g =S f(-0e(®) o [ (etnG = 3 A(G)(6)
G

G



Representation of the density and Hartree potential

We now exploit Poisson’s equation (in atomic units: 4mep = 1):

Vi(r) = / n(r) d,’/ and V2Vy(r) = —4mn(r),

r—r|
which by Fourier transform :

47n(G)

|G|2VH(G):—47rn(G) = Wy(G) = G

The Hartree energy per cell then reads (N number of unit cells):
H G)n(G)
/dr n( V ( 2N Z VH(G = 27TQC6” Z T

In the planewave formalism, no need for the four-centre two-electrons
integrals as encountered in Gaussian-basis codes.



Planewave cutoff

We cannot use an infinite planewave basis (there is an infinite number of
e/®T). Assume you want to describe wavefunctions on a real-space grid
with a (dx=dy=dz) spacing between your grid points. Then you need to
include planewaves that offer a variation on that lengthscale, namely
qualitatively: Apin < dx = Gpax > 27/dx.

Courtesy Xavier Gonze
o o o o o o

Planewave expansion: un(r) = >_, ck(G)e'®T ‘//;?ﬁx\\ Y
[N
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with: 2|k + G2 < Em¥ \\;\f
The size of your planewave basis is the number of o o o olo
reciprocal vectors G within the sphere in reciprocal Now

. . . 241~
space of radius Gp,ax such that the cut-off criteria 0 (
on the planewave kinetic-energy is fulfilled. o B

QE.)"”



Representation of the density and the two energy cutoffs

The density contributed by one occupied Kohn-Sham state:
Gk = €™ T un(r), where up(r) is periodic, reads:

pnk(r) = ‘¢nk(|’)|2 — \u,,k(r)|2 with Unk(r) = Z Unk(G)eiq'F
G

The Fourier transform yields: pn(r) = > ga u:k(G)unk(G’)ei(é/’é)'?

If the wavefunctions have nonzero coefficients
for G-vectors such that |k + G|?/2 < E,, then

the charge density as components up to 4E.,;. k6

In principles, E.,: is the only parameter. In
practice, one can always plays with a second
cutoffs on the charge density.




From real-space to reciprocal space

A important technique is the fast Fourier transform (FFT)
which scales as O(NlogN) !!!

Since most exchange-correlation functional are a function
of the charge density p(r) in real-space, one usually
performs FFT back and forth:

p(G) = p(r) = V(p(r)) = V*(G)
or for the XC-energy density per particle:
p(G) = p(r) = €*(p(r)) = €(G)
and the exchange-correlation energy per cell reads:

EXC/N = [ & n(r)e(r) = Qean Y n(—G)e(G).




The external (ionic) potential

Assume (sp=1,Ns,) species and (3_, nsp) atoms in the unit-cell with
position Tsp j (j = 1, nsp). The ionic potential reads:

Nsp  ngp

vere) = ZZ — Tspj — R),

sp=1 j=1

where V;P(r) is the atomic potential for species (sp). Then:

sp Nsp
Vion(G) _ / C;;VIOH 71Gr _ Z /duvjf 71Gu ZefiG»‘rsp,,-
sp=1 j=1
o—iGR 1 N -
«S ) - L ST vrG)s (G
I R MELRC

where V;P(G) and S*P(G) are the Fourier components of the atomic
potential and structure factor for species (sp).



The kinetic energy and the Brillouin zone sampling

We have calculated all terms, besides the kinetic energy of the
Kohn-Sham states, or, alternatively, the band energy contribution

occp

occp
Z <6l "L g0 >

or Eband: E €n
n

BZ
But really in a solid: Y~0°% = >~ °“P = we have to sum over all

k-points in the Brillouin zone (BZ) and over all occupied bands for a
given k-point.

EineV

FCC path: I-X-W-K-I"-L-U-W-L-K|U-X
(Setyawan & Curtarolo, DOI: 10,1016/} commatsci 2010.05.010]



Brillouin zone sampling

Reminder: let's assume a chain of N-atoms with spacing (a). The BZ
contains N k-points between (—/a) and (7/a) spaced by (27/Na).
Assume you want to calculate the kinetic energy or band energy per cell.
Then you must integrate over the states in the BZ.

E

We need a discrete sampling:

m/a
ﬁ\\\\//m ' f " (QW/Na j Zi Wié(k : kl)
1 m/a dk

. 0 (wik) z But: N —n/a m =1.

where the (1/N) is used to get a quantity (energy, etc.) per cell. The BZ
can thus be sampled by a set of k-points mapping the Brillouin zone
(BZ) such that 3, wy = 1.



Brillouin zone sampling (II)

We sample the Brillouin zone with a set of k-points and calculate the
Kohn-Sham eigenvalues for such k-points. How well our set of k-points
samples the BZ is a convergency parameter: one should slowly increase
the density of k-points in the BZ until convergency is reached !

Band energy per unit cell:

Similarly: n(r) = >, wk|@nk(r)|20(EF — £nk)-

As a matter of fact, standard efficient grids are regular grids sampling the
BZ: a (8x8x8)-grids separate the BZ in 83 little cubes (b;/8,b>/8,b3/8).

See e.g.: H. J. Monkhorst and J. D. Pack, Phys.Rev B13, 5188(1976).



A standard convergency test

Convergence with £

Total Energy (eV)

We can now calculate the total energy (per cell) of solids. We need to
increase the basis size and k-point sampling grid to reach convergency.
For the convergency with planewaves, we decide of a maximum kinetic
energy and take all G-vector components such that:

1
5|k + G|?> < E.t = FFT grid spacing dx = 27/ Gpax-

(5i8)

cut

su\mq 15 200 250 0 30 4

\

-aun ¥
-850

\

S~

Cut-off Energy (eV)

o

The real-space scale dx = 27/ Gpax should
be smaller than the typical scale variations
of the charge density. One can see why
PWs do not like core states: very many
PWs required to describe a localized object.

The BZ sampling is related to the complexity of the band-structure and
the topology of the Fermi surface (gap or not, bands crossing, etc.)



Last "technical” issue: The pseudoptential approximation

Pseudopotentials in solids are of the same nature than pseudopotentials in e.g.
Gaussian-basis codes: they remove core electrons, reducing the number of
degree of freedoms. But there is another crucial goal which is to smooth out
the oscillations of valence orbitals in the core regions: by orthogonality with
core states, valence orbitals must vary rapidly in the core regions. Such
oscillations cost literally thousands of planewaves !!! The wording " soft,
"ultra-soft” refer to the smoothness of the generated pseudopotential.

Figure. In dashed blue, the all-electron (ae) wavefunction,
. with oscillations in the core region, and the (-Z/r) ionic
A Coulomb potential. In red, the " pseudized” (ps)

TN, r wavefunctions and ionic potential with smooth behavior.

\/ All-electron and " pseudized” quantities overlap beyond the
, core radius rc. The pseudopotential is designed such that

vz its action on the pseudo-wavefunction provide the "true”

, all-electron (Kohn-Sham) eigenvalue:

' A ¢/ HXC
_— (535 + Ui+ 1€ ) = oo

http://en.wikipedia.org/wiki/Pseudopotential).



Determination of the unit cell

The first step is to determine the crystal
structure, namely the Bravais lattice to
which the solid belongs. In the case of the
I triclinic systems, the length of the lattice
N vectors (3y, 31,31 (noted 3, b, € in the
figure) and the angles between these
vectors: «, (3,7, needs to be found by
minimising the energy: E = E(31, 3,, 33).

Cubic

AR For each set of lattice vectors, the position
’’’’’’’’ b, of the atoms in the unit-cell must be
determined = inner loop of energy

minimisation to get the position of atoms
at equilibrium in the unit cell.
) L 7 E= E(31732733)({Ti}), with {T,} the position
Moo of the atoms in the unit cell.



Lattice parameter and convergency

“ « .,

Graphite is hexagonal: needs to calculate in i

plane lattice parameter (a = v/3dcc) and (c) AT

which is twice the interplant distance in the AB Mo s

stacking. ae, = V3 x 1.42 A = 4.65 a.u. i
54 :) b

o Total energy of graphite, 6x6x4 k-point grid, ecutwfc=24, 26, 28, 30, 32 ;

ecutrho = 160, 200, 240
Graphite (6x6x4)
B i | Convergency tests for

-11.3930 — T

graphite: energy versus
lattice parameter for
various wave functions
and density plane wave
. % 1 energy cutoffs (courtesy:
/*\ / Nicola Marzari, Quantum
\< ] s Espresso Pseudopotential
7/ TN\ 7 webpages).

n 1 L 1 n n 1 n 1 n 1
4.6 4.64 468 4.6 4.64 4.68 4.6 4.64 4.68

-11.3935

-11.3940

E (Ry/atom)

-11.3945

-11.3950




Pulay’'s errors and basis size finiteness

o Total energy of diamond, 4xdx4 k-point grid, ccutwic=24, 26, 28, 30, 32 ;
ecutrho = 160, 200, 240

Diamond (4x4x4)
160 Ry 200 Ry 240 Ry
o
-11.3830 °
o
-11.3835
o
E o
£ -11.3840
2
] o
o
-11.3845
-11.3850
oy Sy Y I Sy oy B |
668 672 676 68 668 672 676 68 668 672 676 68
161 F
At low cutoff, one can see a weird behavior in the 12-
variations of the energy with respect to the lattice 8r T
parameter. This is an effect of the non-completness 37 [

and "granularity” of the G-vector basis that show QE,)"
at small energy cutoff.

(Courtesy Xavier Gonze/Gian-Marco Rignanese)



Pulay’s errors and basis size finiteness (II)

Upon changing the lattice vectors, the spacing between the G-vectors
changes so that their number within the sphere of radius Gp,.x changes:
we do not treat cells with different volumes on the same footing !!

Lk
earZ

Figure: (Left) Changes in the reciprocal lattice upon volume cell change: the two
circles are the fixed wavefunction and density energy cutoffs. (Right) Same physics in
the case of a deformation of the unit cell shape involved in searching the equilibrium
crystal structure.

Cure: increase energy cutoff or apply " corrections”. See e.g. G P Francis and M C
Payne, J. Phys.: Condens. Matter 2 (1990) 4395-4404.



What is the unit cell 7

Do we really have the correct structure ? We did our best but within the
hard constraint of the number of atoms in the unit cell. What would
happen if we play the game to double, quadruple, etc. the unit cell 7

Lattice points

iz {:,‘,‘.} i::::';'.,i

=
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side view topview
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. - -8 81 8,
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(2% 1) rezansirction {2 1) reconstruction
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T
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Figure: (Left) Standard "zone-boundary” Peierls instability (dimerization and unit-cell
doubling). (Right) Surface reconstruction of the (very simple) Si(001) surface.

Ideally, a stability study should be completed by a look at the phonon band structure
to detect soft modes.



Assessing the merits of DFT in solids:
structural properties



Lattice parameters in metals and non-metals

TABLE IV. Statistical data, mean error, mean absolute error, mean relative error (MRE %), and mean absolute relative error (MARE %),
for lattice constants (A) of the 14 metals and 10 nonmetals in the test set of 24 solids calculated with BAND/LCAO from the SJEOS.
Comparisons to thermally and ZPAE-corrected experimental results (left) and to partially or uncorrected room temperature experimental
values used in Refs. 22 and 41 (right). The best agreement with the experiment are in boldface. For the AMO5 values of Table II, compared
to corrected experimental results, the total ME and MAE are 0.025 and 0.048 A, respectively. The AMOS functional performs better for
metals (MAE=0.045 A) than for nonmetals (MAE=0.052 A).

Compared to corrected experimental values Compared to experimental values used in Refs. 22 and 41
Solid LDA PBEsol PBE TPSS LDA PBEsol PBE TPSS
Metals (14)
ME (A) -0.136 —0.039 0.046 0.039 -0.151 —0.054 0.030 0.024
MAE (A) 0.136 0.042 0.060 0.060 0.151 0.058 0.055 0.060
MRE (%) =271 =0.76 0.95 0.74 =-3.04 =110 0.61 0.39
MARE* (%) 27 0.83 1.24 1.15 3.04 1.21 L1 L19
Nonmetals (10)
ME (A) -0.042 0.026 0.085 0.066 -0.067 0.001 0.060 0.040
MAE (A) 0.042 0.026 0.085 0.066 0.067 0.001 0.060 0.043
MRE (%) -0.86 0.56 1.76 135 -1.41 0.00 119 0.79
MARE® (%) 0.86 0.56 1.76 135 141 0.31 119 0.84
Total (24)
ME (A) -0.097 —0.012 0.062 0.050 -0.116 —0.031 0.043 0.031
MAE (A) 0.097 0.036 0.070 0.062 0.116 0.040 0.057 0.053
MRE (%) -1.94 —0.21 1.29 0.99 -2.36 —0.64 0.85 0.56
MARE® (%) 1.94 0.72 1.45 123 2.36 0.84 117 1.04

#calculated-experimental)/experimental 100%.

Figure: Assessing the performance of recent density functionals for bulk solids, Csonka
et al., Phys. Rev. B 79, 155107 (2009). (see Prof. Janos G. Angyén in the room)



A few words on functionals

There will be this afternoon a lecture on functionals (Pr. Julien
Toulouse).

The functional tested in the previous slide are the standard LDA and
generalized-gradient approximations (GGA, SOGGA, meta-GGA) of
various kinds.

> LDA usually overbinds (too small interatomic distance or lattice
parameter)

> the original PBE usually underbinds (too large interatomic distance
or lattice parameter)

> the revised PBEsol performs better with no general tendency to
over- or under-bind (depends on the system)

Remember however that we are discussing here errors of the order of the
percent: this is very remarkable given the "simplicity” of the GGA
functionals !l Clearly, it is difficult to find a functional that offers a clear
and general improvement for metals and nonmetals.



Other criteria: bulk modulus and cohesive energy

-2.93508e1

—0.0001 —— Birch-Murnaghan EOS
F ® DFT Calc.
A p ~0.0002
I E, 9.3606287 [Ha]
I ks ~0.0003 Vi = To.as2 (Bane
5| P —_ B, =119.982 [GPa]
Area A P £ -0.0004 L 82
Area A - =
P > ] =
£ -0.0005
~ 2
2 4@ % ~0.0006
F '
(a)Tensile stresso=F/A  (b) Shear stress t=F/A (c) Pressure p ~0.0007
usual units MPa usual units MPa usual units MPa _0.0008

H L
1020 1035 1050 1065 108.0
Volume [Bohr?]

Bulk modulus: B = 445 = 1 %. Measure of "stiffness” (# hardness).

<

The cohesive energy is the difference of energy for an atom in the crystal
and for the isolated atom. It is an terrible test: a theoretical setup

(fonctional, basis, etc.) may be very accurate for the solid, but very bad
for the isolated atom (or vice-versa).



Transition metals

40 HCA
“VWN
35 “PBE
“PWO1
30
, 1 SOGGA11
s 25 'PBEsol
s N rPBE
w 20 HN12
g =TPSS
15 urevTPSS
10 - MO6L
“MN12
5 =PBEO
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0 R 1B3LYP
6( x1 0) Ecoh BO

Figure: Bulk Properties of Transition Metals: A Challenge for the Design of Universal
Density Functionals, Janthon et al, J. Chem. Theory Comput. 2014, 10, 3832.

The introduction of a fraction of exact exchange (hybrid functionals)
does not help, and may actually worsen the cohesive energy. Again, the
original PBE GGA performs rather well.



Assessing the merits of DFT in solids:
electronic properties



Reminder: direct/inverse photoemission

—oo @ |—ee

N—N-1

Energy conservation:
hv + Eév = Euin + E,,,V_l

Identify: e, = E) — EN71 (< p).

n

o _E
Ekir\ =< —ees hy
\—O—O— —0— &,
—oo— —oo—
—oo —oo
—oo— —oo—
N—->N+1

Energy conservation:

Epin+ EY = hv + EN?

Identify: e, = EN*? — E) (> p).



From ASCF techniques to the Kohn-Sham equation

A very efficient technique for obtaining the ionization potential and
electronic affinity (namely, the HOMO and LUMO frontier orbital
energies) in finite size systems is to calculate the total energy of the
neutral system and the charged anion and cation. Such a scheme, labeled
ASCF, mimics the photemission experiment.

This is a real problem in solids: charging one unit cell means charging all
units cells periodically = the Coulomb energy diverges !! Further, the
ASCF technique does not allow to obtain all occupied and unoccupied
(virtual) electronic energy levels.

The only thing we are left with is the Kohn-Sham equation:

2

<—2V + Vionic + VHartree + VXC) d)nk(r) = 5nk¢nk(r)




The Kohn-Sham equation

In solids, there is one Kohn-Sham equation to be solved for each kpoints
in the Brillouin zone. In the planewave formalism, such an equation reads:

Z ((kJ;G)25G,G’ + V(G — G')) Ck(G') = ek Cik(G)
G

where the Cok(G) are the Fourier components of the periodic part Uk (r)
of the Kohn—Sham eigenstate: ¢ (r) = e™* uu(r). The Fourier
components of V", VH, and VX€ have been discussed above.
Remember however that:

occp

Eo—%;s,,k—;//rm—i—Exc—/dr n(r)VX<(r)

There is no obvious relation between these {c.k} energies and differences
of total energy between the neutral and the charged systems.



The Kohn-Sham gap of semiconductors

calculated gap [eV]

We compile here below the DFT-LDA Kohn-Sham gap of semiconductors
and insulators (red dots; courtesy Valério Olévano) that we compare to
the experimental values (first diagonal). We also provide the
Hartree-Fock gap (pink dots).

Clearly, the DFT Kohn-Sham gap is
too small !l On the contrary, the
Hartree-Fock gap is too large. As an
important example, the LDA, HF
and experimental band gap of silicon
are: 0.6 eV, 6.5eV,and ... 1.2 eV.

10 —————

| The black dots are the results of
| perturbation theory correcting the
Kohn-Sham energies: the GW

i formalism will be the subject of
[ some of next week lectures.

6 8 10
experimental (ARPES) gap [eV]




Hartree-Fock theory for the homogeneous electron gas

If we plug in the Hartree-Fock (Roothan) eigenvalue equation:

<_V2 + Vion_,_ VH) ¢i(r)_z dr /M S, § = ’¢’( )

2 _ [r — /|
j

the only possible form: e™* x |spin > for homogeneous systems, one

obtains with the proper (1/g?) Fourier transform of the Coulomb field:

dk’ 4t k2 2
e(k) /,<kF/ Flk—wp 2 rirh(k/ke)
with kr the Fermi wavevector and F(x) = 3 + 1;;2 In ’}%;( :

Such an energy is continuous at the Fermi surface (k = kg) but the slope

(
Oe(k)/0k, namely the group velocity, diverges at (kg).



Short and long range screening in solids

Anticipating on next week GW lecture, we will see that nice electronic
properties can be obtained with a one-body eigenvalue equation formally
resembling the Hartree-Fock equation provided that we use the "screened
Coulomb potential” W(r,r’) rather than the bare Coulomb potential.

When a test charge Q is added to the system at ro,
it will repel/attract locally all surrounding electrons,
creating a dn(r) variation of the electronic cloud.

Within linear response theory (x the susceptibility):

dn(r) = /dr'x(r,r') , @

Two Quasi Electrons Interact only Weakly Because of Shielding

The total field generated by Q and dn(r) is:

dr’'én(r’
W(I’, ro) = |r E?I'()| +/ |.; _nfvrl) = Vc(r7 I'o) +/dr/dr” Vc(rv r,)X(rlvr”)VC(rnvro)



Short and long range screening in solids (Il)

Introduce the dielectric function (€) as: W(r,r') = [dr e (r,r" )V (r,r").

\
1
: (a) b
el i 0.75 () Figure courtesy Rafaelle Resta,
\
b
ok \ 1} ey, DI SISSA lecture notes.
\ 05 f - P
!
\ .
S AN 025k In a metal (dotted line), the
Y LS screened Coulomb potential is
1 : ‘-"— 1 . . .
05 1 15 25 i short-ranged: it is usually described
k {(a.u. . . —
(er) rlau) by a Yukawa-like potential: e %" /r.
Figure 2.1, (a): Dingonal dielectrie functions (k) for Al (dashed) and .
Ratio ¢(r)/do(r) between the sereened and u a4 SE ek (2 [walil} (]
from the di:lc((l:{r: [:nninn:hsllo\n:n inc:nJ‘ Aaesectod poteliofa point charge,

In semiconductors, screening is imperfect and the long-range behavior of the

screened Coulomb potential is: 1/(enr) where ey is the macroscopic dielectric
constant (e.g. ey=11.9 for silicon, ey=5.3 for diamond).



Hybrid functionals and the dielectric constant

The previous slide tells us that in metals long-range bare exchange in
metals is somehow inappropriate. Global hybrids such as PBEO or B3LYP
may not be the ideal choice and one should favor a short-range version of
the exchange functional using e.g. the following decomposition of the
Coulomb potential.

rf(x)
1 erf(wlr —r'|) !
F = v (long range) )
f o -2 -2 -1} -1 77,73 ; 1 13 2 20 %
W (short range) L

In semiconductors, a strategy could be to keep precisely a fraction of long
range exchange governed by 1/ep. This can be more formally derived
from perturbation theory, yielding the so-called screened-exchange term:

ocep

oo = o 3 A0

r—r'|



Hybrid functionals from €y, in semiconductors

PBE PBE0  hybrid hybrid  schybrid  Exp.
Type a=0a =025 a=1/"" a =1/ a = 1/scex

Ge (dc) 000 153 077 071

si (dc) 062 175 0.96 1.03 0.99

AP (ZB) 164 298 231 241 237

sic (ZB) 137 291 223 233 220

TiO, (Ru) 181 392 283 318 3.05

Nio (RS) 097 528 2.00 161 111

c (dc) 415 595 5.37 544 5.42

Co0 (RS) 000 453 - 401 362

GaN (ZB) 188 368 310 330 3.26

ZnS (ZB) 236 418 365 385 382

MnO (RS) 112 387 2.55 366 3.60

WOy (M) 192 379 324 350 347

BN (ZB) 449 651 621 634 633

HIO, (M) 432 665 6.38 6.68 6.68

AIN (W2) 433 631 6.07 624 6.23

Zn0O W7 107 3.41 3.06 3.73 3.78

Al:Os (Cr) 631 884 9.42 965 971

MgO (RS) 480 725 7.97 824 833

LiCl (RS) 654 866 9.42 957 9.62

NaCl (RS) 518 726 8.55 873 8584 X

LiF (RS) 9.21 1228 15.48 15.83 16.15 14.2'%2

H20 (XI) 557 805 11.19 11.44 11.71 10.9'*

Ar (cF) 878 1120 14.40 14.54 14.67 14.2'%%

Ne (cF) 1165 1520 2332 22.99 2367 217

ME (eV) 27 03 0.0 03 03 -

MAE (eV) 267 108 0.5 04 05 -

MRE (%) 469 108 11 4.9 33 -

MARE (%) 169 211 9.6 7.4 78 -

In semiconductors, the use of global hybrids
with the percentage o of non-local
exchange (v¥) governed by 1/ey :

Ve (1, ¥') = av(r,r') + (1 — a)wi(r)
+ve(r), with: a=1/em

was shown to produce much better band
gaps in insulators and semiconductors
(Figure from Skone et al. PRB 89, 195112
(2014); see also: Marques et al. PRB 83,
035119 (2011)).



Complement: 0D, 1D, 2D systems with periodic boundary
conditions

(Figure courtesy Xavier Gonze)

Codes with periodic boundary

v conditions can be used to study 0D,

L O < Mok T 1D: 2D systems:.t_he price to pay is
rHeenet to introduce sufficient vacuum to
A avoid cell-cell interactions.
Surface : treatment

) ofaslab Remember that with planewaves,

% tHeb the size of the basis for a given
THET4 IS Point defect in a bulk solid energy cutoff is proportional to the

1 unit cell volume:
If the molecule, surface, etc. has a Q87 = (271)* /Qeen = basis size=
permanent dipole, quadrupole, ... the
cell-cell interaction is long-range: corrective Ng = %nG,?,aX/QBZ ~ Qeenr

terms must be added to cancel these slowly

vanishing interactions (Markov/Payne, 95). One has to pay for the vacuum !



Density functional perturbative theory (DFPT)

Let's take the example of the phonons, namely the vibrational modes. The
standard approach is to build the dynamical matrix and find its eigenvectors:

1 OE{R}) _ -
VMM, OROR,
It is certainly easy to calculate the change in energy by changing the position
of the atoms in the unit cell. But if the wavelength of the phonon mode

det =0

becomes very large, then the unit cell to consider becomes ... extremely large.

00 //*_4_\\
~ 300 e 1
T feeiitssassases) m:‘:‘,«; st 1908
g " s .
g 0 T \/h‘:"‘,:“::f 1 /\/
g 100 / I | ‘fsﬁ% } 1
“I‘ K X T L X W L Dos /\/\

GaAs phonon band structure (LDA and experiment:
Baroni et al. Rev. Mod. Phys. 2001). \/\/\/\/\/



Density functional perturbative theory (DFPT)

To calculate phonon modes with very large wavelength (small q), or a
wavelength incommensurate with the lattice periodicity, the solution is
perturbation theory where you work with the zeroth-order (unperturbed)
eigenstates (£,, @n):

(Asce — €0)[00n) = (6VF —8e,)|¢n) with: SVF = gvion 4 sy/HXC

occp

and: dn(r Z(b (r)o¢n(r) +CC—Z¢ m(r)

m#n

SCF
(6ml3VSFI6n) ,

€n—Em

There are however two problems:
» how do we calculate (¢,|6V>F|o,) (e.g. V>F incommensurate) ?

» we need all the solutions of the Kohn-Sham Hamiltonian: too
expensive in general.



First-order perturbation theory

In the expression for dn(r), terms where both (n,m) refer to occupied
(unoccupied) states cancel each other. As such, dn is built out of matrix
elements coupling only occupied (v=valence) and unoccupied (c=conduction)
states. With P, the projector over the unoccupied state manifold:

Pe(Hscr — en)|0y) = Pe(6V>F — b¢)|¢y)
= (Ascr — en)Pe|dg) = P5V*F5,)

Writing [0%,) = Pc|d¢,) and Pc =1 — P,, with: P, = |6,)(¢v| is the
projector on the occupied levels, we have:

(Hscr—en)low,) = (1= P,)sVF gy) with: 6V T (r) = V" (r)+ 5V n]
sn(r) =Y du(r)de,(r) + cc

This is just a simple self-consistent scheme to be solved for the (d%,).



First-order perturbation theory

Putting back the k-point, we still need to calculate : (¢,//|6 V> F|pui),
where §V°¢F can be incommensurate with the lattice periodicity.

Assume a monochromatic perturbation

§Vien of momentum (q). Due to b
I . 2
periodicity, the only nonzero matrix .
elements are such that: k' =k +q. /2
LI
SCF -
(Durera)|5VF |61) R e i
SCF X
= <uv’(k+q)|5Wq |ka>, e® ¢® o o°
where the (u) and (w) are the periodic o o o _ o
part of the Bloch ¢ and §V°¢F R
electronic and perturbation Bloch Figure: double k- and (k + q)-point

waves. Such matrix elements can be grid needed to calculate the
. . . perturbation matrix elements.
easily calculated in Fourier components.



Complement: The ionic energy and Ewald summations

This term is not specific to planewave formulations, but the Ewald
summation "technology” is an important aspect of codes. The
summation of the Coulomb interaction between point charges converges
very slowly both in real-space (1/R behaviour) and in reciprocal-space
(1/G? behaviour). The trick is to use Ewald’s summation technique,
adding/subtracting a Gaussian charge:

Q=0 (1 (e e—““—”’z) + @ (2" ep(-alr—?)

with (Q, = eZ;, 7)) the charge and position of the ion (J).

Original Direct Reciprocal

TR IR
| "\/l\ﬁJ“%A‘

The field created by a Gaussian charge is the Coulomb field attenuated by
a complementary error function: the sum converges quickly in real space !




Complement: The pseudoptential approximation (I1)

"Norm-conserving” pseudopotentials: [ _ dr|gps(r)]? = [, dr|pae(r)|?
improves the "transferability” (see the (d/de) in the following relation):

~an | (rotrY o (%/wm)}r —an [ a0

c

Continuity of the wavefunction and its derivative is enforced for smoothness.

The pseudopotentials are non-local: each (/m)-channel sees its own
pseudopotential (with non-negligible consequences on the standard [x, p«]
commutators). The Kleinman-Bylander transformation leads to a "separable
form” for the non-local part (less " ghost-states” and more efficient):

V¢ as a (-Z/r) tail and the nonlocal
parts (projectors) are short-ranged.

VPE(7) = V(1) + 3y vil Bim) (B

References: Haman et al. Phys. Rev. Lett. 43, 1494 (1979); Kleinman et al. Phys.
Rev. Lett. 48, 1425 (1982); Gonze et al.Phys. Rev. B 44, 8503 (1991).



