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Introduction

The title ”DFT for solids” does not mean that there is some specific
density functional theory for solids: DFT remains DFT (see lectures by
Prof. Julien Toulouse) but there are just specific implementations (e.g.
planewaves), specific difficulties (defects, charged systems,
incommensurate perturbations or instabilities, etc.) and specific ways of
thinking about the exchange-correlation functional (short versus
long-range screening in metals or insulators).

Book: Electronic Structure: Basic
Theory and Practical Methods,
Richard M. Martin, Cambridge
University Press (2008).



Real systems are usually inhomogeneous

(Hohenberg and Kohn, PRB 1964)

(Kohn and Sham, PRB 1965)

High density limit: kinetic energy dominates
Approximation (2.3) = local density approximation

Plot of the charge density |ψnk|2
associated with the top of the valence
bands and bottom of the conduction
bands in Germanium, a ”nearly” metal
(courtesy Prof. Majewsky, Virginia U.)



Real systems are not in the low or high density limit

Standard extended condensed-matter or solid-state-physics systems are difficult
since they are not in a limit where standard perturbation theory starting from
the high or low-density limits can work ”accurately”.

Correlation energy density for the
interacting electron gas as a function of
the Wigner-Seitz radius (rS ) which is
the radius of the gedanken sphere
whose volume is the total volume
divided by the number of electrons
(ΩWS = 4πr 3

S/2 = Ω/N).

Analytic low-density (Wigner limit where potential energy dominates) and

high-density (RPA limit where kinetic energy dominates) are compared to

”exact” numerical Quantum Monte Carlo data by Ceperley and Alder (D.M.

Ceperley and B.J. Alder, PRL 1980).



DFT/LDA charge density in inhomogeneous systems

As shown here for solid argon, with very
inhomogeneous charge densies, the
DFT/LDA charge density is in excellent
agreement with higher level approaches
[PRB 74, 045102 (2006)].

[PRB 57, 15293 (1998)]

ρVMC (r, r′) = N

Z
ψ∗(r, r2, ..., rN )ψ(r′, r2, ..., rN ) dr2...drN

ρLDA(r, r′) =
X

n

φ∗i (r)φi (r
′)θ(EF − εn)



Spherically averaged XC hole and the associated sum rule

The success of DFT/LDA even for highly inhomogeneous systems can be related to
the quality of the ”spherically averaged” exchange-correlation hole and the fact that
the LDA XC-hole satisfies the correct sum-rule.

E XC =
1

2

Z
dr1dr2

ρ(r1)ρxc (r1, r2)

|r2 − r1|
and

Z
dr2 ρxc (r1, r2) = −1.

Exact versus LDA exchange hole for Neon atom along specific

directions (left) and spherically averaged (right). (Gunnarsson et al.

PRB 1979) Exact (VMC) versus LDA spherically averaged XC-hole for silicon.

[PRB 57, 15293 (1998)]



Minimal reminder: the total energy

The total energy of the system reads (atomic units: 4πε0 = e = ~ = 1):

E0 =

occpX
n

< φn|
−∇2

2
|φn > +

Z
dr V ion(r)n(r) +

1

2

Z Z
n(r)n(r′)

|r − r′|

+ EXC [n] +
1

2

X
IJ

ZI ZJ

|τI − τJ |
with V ion(r) =

X
J

−ZJ

|τJ − r| ,

with (ZJ , τJ ) the charge and position of the ions and EXC [n] the
exchange-correlation energy. We recognise the kinetic energy (really
T −T0 + E ee − J), the ionic (external) potential, the Hartree (classical) energy,
the exchange and correlation energy and the ion-ion Coulomb interaction.

The total energy should be that of the ... unit cell !!

If you double your unit cell, you should obtain an energy twice as large.



Minimal reminder: the Kohn-Sham equation

The Kohn-sham equation, namely the effective one-body eigenvalue
equation, reads:

(−∇2
r

2
+ V eff (r)

)
φn(r) = εnφn(r)

with V eff (r) = V ion(r) + V H (r) + V XC (r), and:

I V ion(r) =
∑

J (−ZJ )/|τJ − r| the ionic (external) potential,

I V H (r) =
∫

dr′n(r′)/|r − r′| the Hartree potential,

I V XC (r) = ∂EXC [n]/∂n(r) the exchange-correlation potential.

with (ZJ , τJ ) the charge and position of the ions and EXC [n] the
exchange-correlation energy. We use atomic units, namely
4πε0 = e = ~ = 1.



Minimal reminder: second formulation of total energy

We can also observe:

occp∑

n

εn =

occp∑

n

< φn|Ĥ|φn >=

occp∑

n

< φn|
−∇2

2
|φn >

+

∫
dr n(r)

(
V ion(r) + V H (r) + V XC (r)

)
,

with:
∑occp

n |φn(r)|2 = n(r), so that the total energy reads:

E0 =

occp∑

n

εn −
1

2

∫ ∫
n(r)n(r′)

|r − r′| + EXC −
∫

dr n(r)V XC (r)

with: V XC (r) = ∂EXC/∂n(r).



The plane wave formalism

The planewave formalism, namely the use of planewaves (PWs) as a
basis, is certainly the most widespread technique in codes dedicated to
deal with solids and periodic boundary conditions. In the field of
solid-state physics, it comes however after other pioneering approaches
such as the muffin-tin approach (total energy calculations by DeCicco et
al. in 1965) where the space was paved with non-overlapping spheres and
a spherical basis was adopted within the spheres, opening the way to the
modern FLAPW techniques.

Planewaves offer a more systematic and unbiased way of describing the
variations of the wavefunctions, density, potentials, etc. in space.
Further, planewaves are very naturally associated with the Bloch theorem
and the Fourier series we have seen for a periodic object.

A standard original article for learning in more details the PWs formalism
combined with DFT is: ”Momentum-space formalism for the total energy
of solids”, J. Ihm, Alex Zunger and Marvin L Cohen, J. Phys. C: Solid
State Phys., Vol. 12, 1979.



The Fourier transform properties

Fourier transform of a periodic function, with Ω the crystal volume and
{G} the reciprocal lattice vectors:

f (r) =
∑

G

f (G)e iG·r and f (G) =
1

Ω

∫
f (r)e−iG·rdr

Several important properties can be exploited:

I plane waves are orthogonal:
∫

e i(G−G′)·rdr = Ωδ(G,G′)

I the Fourier transform of a convolution product is a direct product:

1

Ω

∫
dre−iG·r

∫
dr′ f (r′)g(r − r′) = Ωf (G)g(G)

I Parseval’s relation (f and g have the lattice periodicity):

∫
f (r)g(r)

dr

Ω
=
∑

G

f (−G)g(G) or

∫
f ∗(r)g(r)

dr

Ω
=
∑

G

f (G)g(G)



Representation of the density and Hartree potential

We now exploit Poisson’s equation (in atomic units: 4πε0 = 1):

VH (r) =

∫
n(r′) dr′

|r − r′| and ∇2VH (r) = −4πn(r),

which by Fourier transform :

|G|2VH (G) = −4πn(G) ⇒ VH (G) =
4πn(G)

|G|2 .

The Hartree energy per cell then reads (N number of unit cells):

1

2N

∫
dr n(r)V H (r) =

Ω

2N

∑

G

n(−G)VH (G) = 2πΩcell

∑

G

n(−G)n(G)

|G|2 .

In the planewave formalism, no need for the four-centre two-electrons
integrals as encountered in Gaussian-basis codes.



Planewave cutoff

We cannot use an infinite planewave basis (there is an infinite number of

e i~G ·~r ). Assume you want to describe wavefunctions on a real-space grid
with a (dx=dy=dz) spacing between your grid points. Then you need to
include planewaves that offer a variation on that lengthscale, namely
qualitatively: λmin ≤ dx ⇒ Gmax ≥ 2π/dx .

Planewave expansion: unk(r) =
∑

g cnk(G)e i~G ·~r

with: 1
2 |k + G|2 ≤ Emax

cut

The size of your planewave basis is the number of
reciprocal vectors G within the sphere in reciprocal
space of radius Gmax such that the cut-off criteria
on the planewave kinetic-energy is fulfilled.

Courtesy Xavier Gonze



Representation of the density and the two energy cutoffs

The density contributed by one occupied Kohn-Sham state:
φnk = e ik·runk(r), where unk(r) is periodic, reads:

ρnk(r) = |φnk(r)|2 = |unk(r)|2 with unk(r) =
∑

G

unk(G)e i~G ·~r

The Fourier transform yields: ρnk(r) =
∑

GG′ u∗nk(G)unk(G′)e i(~G ′−~G)·~r

If the wavefunctions have nonzero coefficients
for G-vectors such that |k + G|2/2 < Ecut , then
the charge density as components up to 4Ecut .

In principles, Ecut is the only parameter. In
practice, one can always plays with a second
cutoffs on the charge density.



From real-space to reciprocal space

A important technique is the fast Fourier transform (FFT)
which scales as O(NlogN) !!!

Since most exchange-correlation functional are a function
of the charge density ρ(r) in real-space, one usually
performs FFT back and forth:

ρ(G)⇒ ρ(r)⇒ V xc (ρ(r))⇒ V xc (G)

or for the XC-energy density per particle:

ρ(G)⇒ ρ(r)⇒ εxc (ρ(r))⇒ εxc (G)

and the exchange-correlation energy per cell reads:

EXC/N =
∫

dr
N n(r)εxc (r) = Ωcell

∑
G n(−G)εxc (G).

Plane Waves - Pseudopotentials, Bristol March 2007 16

Going from the real space to the reciprocal space

n(r) = 
G!sphere(2)

" n(G) eiGr

Use of the discrete Fourier transform r
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The external (ionic) potential

Assume (sp=1,Nsp) species and (
∑

sp nsp) atoms in the unit-cell with
position τsp,j (j = 1, nsp). The ionic potential reads:

V ion(r) =

Nsp∑

sp=1

nsp∑

j=1

∑

R

V sp
at (r − τsp,j − R),

where V sp
at (r) is the atomic potential for species (sp). Then:

V ion(G) =

∫
dr

Ω
V ion(r)e−iG·r =

Nsp∑

sp=1

∫
duV sp

at (u)e−iG·u
nsp∑

j=1

e−iG·τsp,j

(
×
∑

R

e−iG·R

Ω

)
=

1

Ωcell

Nsp∑

sp=1

V sp
at (G)S sp(G)

where V sp
at (G) and S sp(G) are the Fourier components of the atomic

potential and structure factor for species (sp).



The kinetic energy and the Brillouin zone sampling

We have calculated all terms, besides the kinetic energy of the
Kohn-Sham states, or, alternatively, the band energy contribution:

T0 =

occp∑

n

< φn|
−∇2

2
|φn > or Eband =

occp∑

n

εn

But really in a solid:
∑occp

n ⇒∑BZ ,occp
nk ⇒ we have to sum over all

k-points in the Brillouin zone (BZ) and over all occupied bands for a
given k-point.

10/05/15 08:54
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Brillouin zone sampling

Reminder: let’s assume a chain of N-atoms with spacing (a). The BZ
contains N k-points between (−π/a) and (π/a) spaced by (2π/Na).
Assume you want to calculate the kinetic energy or band energy per cell.
Then you must integrate over the states in the BZ.

a  a 
(wi,ki) 

We need a discrete sampling:

1
N

∫ π/a

−π/a
dk

(2π/Na) '
∑

i wiδ(k − ki ).

But: 1
N

∫ π/a

−π/a
dk

(2π/Na) = 1.

where the (1/N) is used to get a quantity (energy, etc.) per cell. The BZ
can thus be sampled by a set of k-points mapping the Brillouin zone
(BZ) such that

∑
k wk = 1.



Brillouin zone sampling (II)

We sample the Brillouin zone with a set of k-points and calculate the
Kohn-Sham eigenvalues for such k-points. How well our set of k-points
samples the BZ is a convergency parameter: one should slowly increase
the density of k-points in the BZ until convergency is reached !

10/05/15 08:54

Page 1 sur 1http://upload.wikimedia.org/wikipedia/commons/0/04/Band_structure_Si_schematic.svg

k

E 
in

 e
V

6

0

−10

L Λ Γ Δ Χ U,K Σ Γ

Γ1

Si

Γ'25

Γ15

Χ1 Ev

Ec

−6

Χ1

Γ1

Band energy per unit cell:

∑

nk

wkεnkθ(EF − εnk)

with:
∑

nk wk = 1.

Similarly: n(r) =
∑

nk wk|φnk(r)|2θ(EF − εnk).

As a matter of fact, standard efficient grids are regular grids sampling the
BZ: a (8x8x8)-grids separate the BZ in 83 little cubes (b1/8,b2/8,b3/8).

See e.g.: H. J. Monkhorst and J. D. Pack, Phys.Rev B13, 5188(1976).



A standard convergency test

We can now calculate the total energy (per cell) of solids. We need to
increase the basis size and k-point sampling grid to reach convergency.
For the convergency with planewaves, we decide of a maximum kinetic
energy and take all G-vector components such that:

1

2
|k + G|2 ≤ Ecut ⇒ FFT grid spacing dx = 2π/Gmax .

The real-space scale dx = 2π/Gmax should
be smaller than the typical scale variations
of the charge density. One can see why
PWs do not like core states: very many
PWs required to describe a localized object.

The BZ sampling is related to the complexity of the band-structure and
the topology of the Fermi surface (gap or not, bands crossing, etc.)



Last ”technical” issue: The pseudoptential approximation

Pseudopotentials in solids are of the same nature than pseudopotentials in e.g.
Gaussian-basis codes: they remove core electrons, reducing the number of
degree of freedoms. But there is another crucial goal which is to smooth out
the oscillations of valence orbitals in the core regions: by orthogonality with
core states, valence orbitals must vary rapidly in the core regions. Such
oscillations cost literally thousands of planewaves !!! The wording ”soft,
”ultra-soft” refer to the smoothness of the generated pseudopotential.

(Courtesy
http://en.wikipedia.org/wiki/Pseudopotential).

Figure. In dashed blue, the all-electron (ae) wavefunction,
with oscillations in the core region, and the (-Z/r) ionic
Coulomb potential. In red, the ”pseudized” (ps)
wavefunctions and ionic potential with smooth behavior.
All-electron and ”pseudized” quantities overlap beyond the
core radius rC . The pseudopotential is designed such that
its action on the pseudo-wavefunction provide the ”true”
all-electron (Kohn-Sham) eigenvalue:„

−∇2

2
+ V̂ ion

ps + V̂ HXC

«
φat

ps (r) = εat
aeφ

at
ps (r)



Determination of the unit cell

Crystal systems: 
The translational symmetry of all the 230 space groups can be grouped into 14  
Bravais lattice systems:  
Seven of the 14 systems are primitive; they are triclinic, monoclinic,  
orthorhombic, trigonal (rhombohedral), tetragonal, hexagonal, and cubic. The  
remaining systems have similar shapes and angular relations, but are doubly or  
triply degenerate unit cells.  
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Visual representations are given at the left. 

A fact about lattice systems: 

9.  The preferred unit cell is primitive, 
has lattice vectors as nearly equal 
in length as possible, and has an 
obtuse angle between two 
vectors, if possible. The preferred 
setting of the lattice often, but not 
always, has the symmetry 
element of greatest rank parallel 
with the c axis. (The monoclinic 
and trigonal­rhombohedral lattices 
are exceptions to this rule. 

10.  The lattice system must have at 
least as great a symmetry as the 
point group symmetry, but it may 
also have more. 

11.  The triclinic system is sometimes 
called the anorthic system 
because there are no angles that 
are orthogonal. 

12.  The trigonal system may also be 
expressed as a triply degenerate 
hexagonal cell (see below). This 
setting is an example of point 10 
above. 

13.  There are several conventions for 
determining the choice of a,b, and 
c that reflect the symmetry of the 
crystal, and sometimes the 
conventions conflict. An example
 is the choice of the c axis in the 
monoclinic system. In this case, 
a prominent zone axis is often 
chosen as the axis (zone axes
 are defined below).  

The first step is to determine the crystal
structure, namely the Bravais lattice to
which the solid belongs. In the case of the
triclinic systems, the length of the lattice
vectors (~a1,~a1,~a1) (noted ~a,~b,~c in the
figure) and the angles between these
vectors: α, β, γ, needs to be found by
minimising the energy: E = E (~a1,~a2,~a3).

For each set of lattice vectors, the position
of the atoms in the unit-cell must be
determined ⇒ inner loop of energy
minimisation to get the position of atoms
at equilibrium in the unit cell.
E = E(~a1,~a2,~a3)({τi}), with {τi} the position
of the atoms in the unit cell.



Lattice parameter and convergency

Graphite is hexagonal: needs to calculate in
plane lattice parameter (a =

√
3dCC ) and (c)

which is twice the interplant distance in the AB
stacking. aexp =

√
3× 1.42 Å = 4.65 a.u.

Convergence tests for C.pz-rrkjus.UPF, courtesy of Nicola Marzari and Young-Su
Lee:

• Total energy of graphite, 6x6x4 k-point grid, ecutwfc=24, 26, 28, 30, 32 ;
ecutrho = 160, 200, 240

4.6 4.64 4.68
a.u.

-11.3955 

-11.3950 

-11.3945 

-11.3940 

-11.3935 

-11.3930 

E 
(R

y/
at

om
)

24
26
28
30
32

Graphite (6x6x4)
160 Ry

4.6 4.64 4.68

200 Ry

4.6 4.64 4.68

240 Ry Convergency tests for
graphite: energy versus
lattice parameter for
various wave functions
and density plane wave
energy cutoffs (courtesy:
Nicola Marzari, Quantum
Espresso Pseudopotential
webpages).



Pulay’s errors and basis size finiteness

• Total energy of diamond, 4x4x4 k-point grid, ecutwfc=24, 26, 28, 30, 32 ;
ecutrho = 160, 200, 240

6.68 6.72 6.76 6.8
a.u.

-11.3850 

-11.3845 

-11.3840 

-11.3835 

-11.3830 

E 
(R

y/
at

om
)

24
26
28
30

Diamond (4x4x4)
160 Ry

6.68 6.72 6.76 6.8

200 Ry

6.68 6.72 6.76 6.8

240 Ry

At low cutoff, one can see a weird behavior in the
variations of the energy with respect to the lattice
parameter. This is an effect of the non-completness
and ”granularity” of the G-vector basis that show
at small energy cutoff.

(Courtesy Xavier Gonze/Gian-Marco Rignanese)



Pulay’s errors and basis size finiteness (II)

Upon changing the lattice vectors, the spacing between the G-vectors
changes so that their number within the sphere of radius Gmax changes:
we do not treat cells with different volumes on the same footing !!

Plane Waves (contd)

• Plane wave cutoff for density:
2Gcut → 4Ecut

Gcut

Same cutoff, but
lattice constant changed

• Basis set depends on the lattice constant:
Pulay corrections

• FFT essential for efficiency (T̂ + VKS)ψ:
eg. V (r⃗)ψ(r⃗): convolution in G-space!

Figure: (Left) Changes in the reciprocal lattice upon volume cell change: the two
circles are the fixed wavefunction and density energy cutoffs. (Right) Same physics in
the case of a deformation of the unit cell shape involved in searching the equilibrium
crystal structure.

Cure: increase energy cutoff or apply ”corrections”. See e.g. G P Francis and M C

Payne, J. Phys.: Condens. Matter 2 (1990) 4395-4404.



What is the unit cell ?

Do we really have the correct structure ? We did our best but within the
hard constraint of the number of atoms in the unit cell. What would
happen if we play the game to double, quadruple, etc. the unit cell ?

Figure: (Left) Standard ”zone-boundary” Peierls instability (dimerization and unit-cell
doubling). (Right) Surface reconstruction of the (very simple) Si(001) surface.

Ideally, a stability study should be completed by a look at the phonon band structure

to detect soft modes.



Assessing the merits of DFT in solids:
structural properties



Lattice parameters in metals and non-metals

Figure: Assessing the performance of recent density functionals for bulk solids, Csonka
et al., Phys. Rev. B 79, 155107 (2009). (see Prof. János G. Ángyán in the room)



A few words on functionals

There will be this afternoon a lecture on functionals (Pr. Julien
Toulouse).

The functional tested in the previous slide are the standard LDA and
generalized-gradient approximations (GGA, SOGGA, meta-GGA) of
various kinds.

I LDA usually overbinds (too small interatomic distance or lattice
parameter)

I the original PBE usually underbinds (too large interatomic distance
or lattice parameter)

I the revised PBEsol performs better with no general tendency to
over- or under-bind (depends on the system)

Remember however that we are discussing here errors of the order of the
percent: this is very remarkable given the ”simplicity” of the GGA
functionals !! Clearly, it is difficult to find a functional that offers a clear
and general improvement for metals and nonmetals.



Other criteria: bulk modulus and cohesive energy

Bulk modulus: B = 1
V

∆P
∆V = 1

V
∂2E
∂V 2 . Measure of ”stiffness” (6= hardness).

The cohesive energy is the difference of energy for an atom in the crystal
and for the isolated atom. It is an terrible test: a theoretical setup
(fonctional, basis, etc.) may be very accurate for the solid, but very bad
for the isolated atom (or vice-versa).



Transition metals

Figure: Bulk Properties of Transition Metals: A Challenge for the Design of Universal

Density Functionals, Janthon et al, J. Chem. Theory Comput. 2014, 10, 3832.

The introduction of a fraction of exact exchange (hybrid functionals)
does not help, and may actually worsen the cohesive energy. Again, the
original PBE GGA performs rather well.



Assessing the merits of DFT in solids:
electronic properties



Reminder: direct/inverse photoemission

• By solving the 1-electron Schrödinger equation: 
 
 
 
we obtain the band structure εn which can be determined experimentally 
by photoemission or inverse photoemission (valence or conduction bands).

One particle approximations

⋮

E

hν 
⋮

Energy conservation: 
   before  → hν + EN,0 

   after     → Ekin + EN-1,n 

The binding energy is: 
   Ekin − hν = EN,0 − EN-1,n  = εn 
    EN-1,n = ε1 +…+ εn + … + εN

Ekin 

N→N-1

εn

×


�1

2
—2 +Vext(r)

�
fn(r) = enfn(r)

Energy conservation:
hν + EN

0 = Ekin + EN−1
n

Identify: εn = EN
0 − EN−1

n (< µ).

• By solving the 1-electron Schrödinger equation: 
 
 
 
we obtain the band structure εn which can be determined experimentally 
by photoemission or inverse photoemission (valence or conduction bands).

One particle approximations

⋮

E hν 

⋮

Energy conservation: 
   before  → Ekin + EN,0 

   after     → hν + EN+1,n 

The binding energy is: 
   Ekin − hν = EN+1,n − EN,0 = εn 
    EN+1,n = ε1 + … + εN + εn

Ekin 

N→N+1

εn


�1

2
—2 +Vext(r)

�
fn(r) = enfn(r)

Energy conservation:
Ekin + EN

0 = hν + EN−1
n

Identify: εn = EN+1
n − EN

0 (> µ).



From ∆SCF techniques to the Kohn-Sham equation

A very efficient technique for obtaining the ionization potential and
electronic affinity (namely, the HOMO and LUMO frontier orbital
energies) in finite size systems is to calculate the total energy of the
neutral system and the charged anion and cation. Such a scheme, labeled
∆SCF, mimics the photemission experiment.

This is a real problem in solids: charging one unit cell means charging all
units cells periodically ⇒ the Coulomb energy diverges !! Further, the
∆SCF technique does not allow to obtain all occupied and unoccupied
(virtual) electronic energy levels.

The only thing we are left with is the Kohn-Sham equation:

(−∇2

2
+ V̂ ionic + V̂ Hartree + V̂ XC

)
φnk(r) = εnkφnk(r)



The Kohn-Sham equation

In solids, there is one Kohn-Sham equation to be solved for each kpoints
in the Brillouin zone. In the planewave formalism, such an equation reads:

∑

G′

(
(k + G)2

2
δG,G′ + V eff (G− G′)

)
Cnk(G′) = εnkCnk(G)

where the Cnk(G) are the Fourier components of the periodic part unk(r)
of the Kohn-Sham eigenstate: φnk(r) = e ik·runk(r). The Fourier
components of V ion, V H , and V XC have been discussed above.

Remember however that:

E0 =

occp∑

nk

εnk −
1

2

∫ ∫
n(r)n(r′)

|r − r′| + EXC −
∫

dr n(r)V XC (r)

There is no obvious relation between these {εnk} energies and differences
of total energy between the neutral and the charged systems.



The Kohn-Sham gap of semiconductors

We compile here below the DFT-LDA Kohn-Sham gap of semiconductors
and insulators (red dots; courtesy Valério Olévano) that we compare to
the experimental values (first diagonal). We also provide the
Hartree-Fock gap (pink dots).

Clearly, the DFT Kohn-Sham gap is
too small !! On the contrary, the
Hartree-Fock gap is too large. As an
important example, the LDA, HF
and experimental band gap of silicon
are: 0.6 eV, 6.5 eV, and ... 1.2 eV.

The black dots are the results of
perturbation theory correcting the
Kohn-Sham energies: the GW
formalism will be the subject of
some of next week lectures.



Hartree-Fock theory for the homogeneous electron gas

If we plug in the Hartree-Fock (Roothan) eigenvalue equation:

(−∇2

2
+ V̂ ion + V̂ H

)
φi (r)−

∑

j

∫
dr′

φ∗j (r′)φj (r)φi (r′)

|r − r′| δsi ,sj = εiφi (r)

the only possible form: e ik·r × |spin > for homogeneous systems, one
obtains with the proper (1/q2) Fourier transform of the Coulomb field:

ε(k) =
k2

2
−
∫

k′<kF

∫
dk′

(2π)3

4π

|k− k′|2 =
k2

2
− 2

π
kF F (k/kF )

with kF the Fermi wavevector and F (x) = 1
2 + 1−x2

4x ln
∣∣∣ 1+x

1−x

∣∣∣.

Such an energy is continuous at the Fermi surface (k = kF ) but the slope
∂ε(k)/∂k, namely the group velocity, diverges at (kF ).



Short and long range screening in solids

Anticipating on next week GW lecture, we will see that nice electronic
properties can be obtained with a one-body eigenvalue equation formally
resembling the Hartree-Fock equation provided that we use the ”screened
Coulomb potential” W (r, r′) rather than the bare Coulomb potential.

When a test charge Q is added to the system at r0,
it will repel/attract locally all surrounding electrons,
creating a δn(r) variation of the electronic cloud.
Within linear response theory (χ the susceptibility):

δn(r) =

Z
dr′χ(r, r′)

Q

|r − r0|

The total field generated by Q and δn(r) is:

W (r, r0) =
Q

|r − r0|
+

Z
dr′δn(r′)

|r − r′| = V C (r, r0) +

Z
dr′dr”V C (r, r′)χ(r′, r”)V C (r”, r0)



Short and long range screening in solids (II)

Introduce the dielectric function (ε) as: W (r, r′) =
R

dr”ε−1(r, r”)V C (r, r”).

Figure courtesy Rafaelle Resta,
SISSA lecture notes.

In a metal (dotted line), the
screened Coulomb potential is
short-ranged: it is usually described
by a Yukawa-like potential: e−kF r/r .

In semiconductors, screening is imperfect and the long-range behavior of the

screened Coulomb potential is: 1/(εM r) where εM is the macroscopic dielectric

constant (e.g. εM =11.9 for silicon, εM =5.3 for diamond).



Hybrid functionals and the dielectric constant

The previous slide tells us that in metals long-range bare exchange in
metals is somehow inappropriate. Global hybrids such as PBE0 or B3LYP
may not be the ideal choice and one should favor a short-range version of
the exchange functional using e.g. the following decomposition of the
Coulomb potential.

1

|r − r′| =
erf (ω|r − r′|)
|r − r′| (long range)

+
erfc(ω|r − r′|)
|r − r′| (short range)

In semiconductors, a strategy could be to keep precisely a fraction of long
range exchange governed by 1/εM . This can be more formally derived
from perturbation theory, yielding the so-called screened-exchange term:

ΣSEX '
−1

εM

occp∑

n

φn(r)φ∗n(r′)

|r − r′|



Hybrid functionals from εM in semiconductors

In semiconductors, the use of global hybrids
with the percentage α of non-local
exchange (v ex

x ) governed by 1/εM :

vxc (r, r′) = αv ex
x (r, r′) + (1− α)vx (r)

+ vc (r), with: α = 1/εM

was shown to produce much better band
gaps in insulators and semiconductors
(Figure from Skone et al. PRB 89, 195112
(2014); see also: Marques et al. PRB 83,
035119 (2011)).



Complement: 0D, 1D, 2D systems with periodic boundary
conditions

(Figure courtesy Xavier Gonze)

If the molecule, surface, etc. has a
permanent dipole, quadrupole, ... the
cell-cell interaction is long-range: corrective
terms must be added to cancel these slowly
vanishing interactions (Markov/Payne, 95).

Codes with periodic boundary
conditions can be used to study 0D,
1D, 2D systems: the price to pay is
to introduce sufficient vacuum to
avoid cell-cell interactions.

Remember that with planewaves,
the size of the basis for a given
energy cutoff is proportional to the
unit cell volume:

ΩBZ = (2π)3/Ωcell ⇒ basis size=

NG = 4
3
πG 3

max/ΩBZ ' Ωcell

One has to pay for the vacuum !



Density functional perturbative theory (DFPT)

Let’s take the example of the phonons, namely the vibrational modes. The
standard approach is to build the dynamical matrix and find its eigenvectors:

det

˛̨̨̨
1√

MI MJ

∂2E({R})
∂RI∂RJ

− ω2

˛̨̨̨
= 0

It is certainly easy to calculate the change in energy by changing the position

of the atoms in the unit cell. But if the wavelength of the phonon mode

becomes very large, then the unit cell to consider becomes ... extremely large.

GaAs phonon band structure (LDA and experiment:
Baroni et al. Rev. Mod. Phys. 2001).



Density functional perturbative theory (DFPT)

To calculate phonon modes with very large wavelength (small q), or a
wavelength incommensurate with the lattice periodicity, the solution is
perturbation theory where you work with the zeroth-order (unperturbed)
eigenstates (εn, φn):

(ĤSCF − εn)|δφn〉 = (δV SCF − δεn)|φn〉 with: δV SCF = δV ion + δV HXC

and: δn(r) =

occp∑

n

φ∗n(r)δφn(r)+cc =
∑

m 6=n

φ∗n(r)φm(r)
〈φm|δV SCF |φn〉

εn − εm
+cc

There are however two problems:

I how do we calculate 〈φm|δV SCF |φn〉 (e.g. δV SCF incommensurate) ?

I we need all the solutions of the Kohn-Sham Hamiltonian: too
expensive in general.



First-order perturbation theory

In the expression for δn(r), terms where both (n,m) refer to occupied
(unoccupied) states cancel each other. As such, δn is built out of matrix
elements coupling only occupied (v=valence) and unoccupied (c=conduction)
states. With P̂c the projector over the unoccupied state manifold:

P̂c (ĤSCF − εn)|δφv 〉 = P̂c (δV SCF − δε)|φv 〉

⇒ (ĤSCF − εn)P̂c |δφv 〉 = P̂cδV
SCF |φv 〉

Writing |δψv 〉 = P̂c |δφv 〉 and P̂c = 1− P̂v , with: P̂v =
P

v |φv 〉〈φv | is the
projector on the occupied levels, we have:

(ĤSCF −εn)|δψv 〉 = (1− P̂v )δV SCF |φv 〉 with: δV SCF (r) = δV ion(r)+δV HXC [n]

δn(r) =
X

v

φ∗v (r)δψv (r) + cc

This is just a simple self-consistent scheme to be solved for the (δψv ).



First-order perturbation theory

Putting back the k-point, we still need to calculate : 〈φv ′k′ |δV SCF |φvk〉,
where δV SCF can be incommensurate with the lattice periodicity.

Assume a monochromatic perturbation
δV ion

q of momentum (q). Due to
periodicity, the only nonzero matrix
elements are such that: k′ = k + q.

〈φv ′(k+q)|δV SCF |φvk〉

= 〈uv ′(k+q)|δwSCF
q |uvk〉,

where the (u) and (w) are the periodic
part of the Bloch φ and δV SCF

electronic and perturbation Bloch
waves. Such matrix elements can be
easily calculated in Fourier components.

Example:

quadratic 2-dimensional lattice

q1 q2 4 16 k-points

only 3 inequivalent k-points ( IBZ)

– 4 k1
1
8

1
8 ω1

1
4

– 4 k2
3
8

3
8 ω2

1
4

– 8 k3
3
8

1
8 ω3

1
2

1
ΩBZ BZ

F k dk 1
4 F k1

1
4 F k2

1
2 F k3

b!
b!

BZIBZ
kkkk0

½
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q"

Figure: double k- and (k + q)-point
grid needed to calculate the
perturbation matrix elements.



Complement: The ionic energy and Ewald summations
This term is not specific to planewave formulations, but the Ewald
summation ”technology” is an important aspect of codes. The
summation of the Coulomb interaction between point charges converges
very slowly both in real-space (1/R behaviour) and in reciprocal-space
(1/G 2 behaviour). The trick is to use Ewald’s summation technique,
adding/subtracting a Gaussian charge:

QJ = QJ

(
1−

(α
π

)3/2

e−α(r−τJ )2

)
+ QJ

(α
π

)3/2

exp(−α(r − τJ )2)

with (QJ = eZJ , τJ ) the charge and position of the ion (J).

The field created by a Gaussian charge is the Coulomb field attenuated by
a complementary error function: the sum converges quickly in real space !



Complement: The pseudoptential approximation (II)

”Norm-conserving” pseudopotentials:
R

r<rc
dr |φps (r)|2 =

R
r<rc

dr |φae(r)|2

improves the ”transferability” (see the (d/dε) in the following relation):

−2π

»
(rφ(r)2 d

dε

„
d

dr
lnφ(r)

«–
rc

= 4π

Z rc

0

dr |φ(r)|2

Continuity of the wavefunction and its derivative is enforced for smoothness.

The pseudopotentials are non-local: each (lm)-channel sees its own
pseudopotential (with non-negligible consequences on the standard [x , px ]
commutators). The Kleinman-Bylander transformation leads to a ”separable
form” for the non-local part (less ”ghost-states” and more efficient):

V ps (~r) = V loc (r) +
P

ml vl |βlm〉〈βlm|
V loc as a (-Z/r) tail and the nonlocal
parts (projectors) are short-ranged.

References: Haman et al. Phys. Rev. Lett. 43, 1494 (1979); Kleinman et al. Phys.

Rev. Lett. 48, 1425 (1982); Gonze et al.Phys. Rev. B 44, 8503 (1991).


