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Empirical vs ab initio calculations

Empirical approaches: interaction between two atoms described by an explicit
function of their positions (ex: Lennard-Jones, 1922):

V (r) = 4ε[(σ/r)12 − (σ/r)6]

where (σ, ε) are adjusted to reproduce experimental interatomic distances,
vibrational frequencies, etc. There are also empirical approaches to the elec-
tronic problem (tight-binding, Hückel, etc.)

Question: can the same parameters describe diamond, graphite, nanotubes
and fullerenes ? In the case of inaccessible systems (earth center, new mate-
rials, etc.) which parameters do we use ?

ab initio approaches : can we calculate structural, dynamical, electronic,
response properties without any adjustable parameter ?
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In principle, one can calculate everything from first-principles:

H =
∑

i

−1

2
∇i

2 +
N
∑

i=1

vext(ri) +
N
∑

i<j

1

rij
, vext(ri) = −

ions
∑

I

ZI

|RI − ri|

Ground-state energy (without Eionic): E0 =< ψ0|H|ψ0 > with:

• ψ0 = ψ0[r1σ1, ..., rNσN ] antisymmetric

• |ψ0[r1σ1, ..., rNσN )|2dr1..drN probability of finding electron i in [ri,ri+dri].

• n(r) = ρ(r) =< ψ0|
∑

i δ(r − ri)|ψ0 > charge density

• ρ2(r, r
′) =< ψ0|

∑

i6=j δ(r − ri)δ(r
′ − rj)|ψ0 > density of pairs, etc.

Problem: We don’t know ψ0 ! We could use variational
principle. However with ψ = ψ[r1σ1, ..., rNσN ], calculat-
ing < ψ|H|ψ > would require (ngrid)3N ∼ 1030 opera-
tions (for small molecule). With 1012 flops machine =⇒
centuries.
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Hartree-Fock: Variational approach with exact Hamiltonian but approxi-
mate wavefunction: a single Slater determinant (Pauli principle).

ψ(x1,x2, ...,xN) =
1√
N !











φ1(r1)σ1 .... φN (r1)σN

φ1(r2)σ1 .... φN (r2)σN

...
. . .

...
φ1(rN)σ1 .... φN (rN)σN











=
1√
N !

∑

P

(−1)ε(P )φP (1)(r1)...φP (N)(rN )σP (1)...σP (N)

Ground-state energy: EHF
0 =

∑

i〈φi| − 1
2∇2 + vext|φi〉 + 1

2

∑N
i,j=1(Jij −Kij)

Jij =

∫

drdr′
|φi(r)|2|φj(r

′)|2
|r− r′| and Kij = δσiσj

∫

drdr′
φ∗i (r)φj(r)φi(r

′)φ∗j (r
′)

|r− r′|
with Jij and Kij the (classic) Coulomb (Hartree) and (quantum) exchange
(Fock) terms. One now has N2 integrals in (ngrid)

6 dimension (instead of
(ngrid)

3N dimension). The φi will be given by variational principle.
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The exchange hole (X-hole)

Density of pairs: ρ2(x,x
′) = 〈ψ|∑i6=j δ(x− xi)δ(x

′ − xj)|ψ〉, x = (r, σ)
gives probability to have an electron with spin σ in r with an electron with
spin σ′ in r′. In HF, electrons with opposite spins uncorrelated =⇒ energy
penality. Correlation energy: Eexp- EHF =EC < 0

Normalized distribution function:
g(x,x′) = ρ2(x,x

′)/n(x)n(x′):

Eee =
1

2

∫

ρ2(r, r
′)

|r − r′| drdr
′ =

1

2

∫

n(r)n(r′)

|r − r′| drdr
′ +

1

2

∫

n(r)hX(r, r′)

|r − r′| drdr′

hX(r, r′) = n(r′)(g(r, r′)− 1) the X-hole which verifies:
∫

hX(r, r′)dr′ = −1.
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The helium atom: effect of correlations

Ground state: L=S=0 (singulet) symmetric through radial part f(r1, r2).
Ground-state (GS) energy: Eexp = -5.8075 Rydb.

Trial 1: We take 1s state to build GS wavefunction :

f(r1, r2) = φa(r1)φa(r2), φa(r) = (a3/2/π1/2)e−ar

where a is a variatiobal parameter. E(a) is minimum for a0=(2-5/16) with
E(a0) = -5.695 Ry (effective ionic charge: (2- 5/16)e ← screening).

Trial 2: We provide more variational freedom:

f(r1, r2) = φa(r1)φb(r2) + φb(r1)φa(r2)

Minimum energy (Taylor,Parr): (a0, b0) = (2.183, 1.1885) and E(a0, b0) = -
5.751 Ry in better agreement with experiment.
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Trial 3 We include p-functions (with L=0; see Cohen-Tannoudji p.1017):

f(r1, r2) = (1 + λ2)−1/2{φa(r1)φb(r2) + φb(r1)φa(r2) +
λ√
3
ψp(r1, r2)}

ψp(r1, r2) = h10(r1)h10(r2) + h1−1(r1)h11(r2)h1−1(r1)h11(r2) with :

h1m(r) = γ5/2/(3π)1/2re−γrY1m(θ, φ)

Minimum energy: (a, b, γ, λ) = (2,176,1.201,2.475,-0.06128) and E(a, b, γ, λ)=-
5.790 Ry

Essai 1 Essai 2 Essai 3

Thanks to p orbitals, the pair distribution function: P(r1, r2) = P (|r1|, |r2|, θ)
is angular dependant and P (θ = π) > P (θ = 0) (angular correlations).
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Trial 4: The Hartree-Fock solution. With the constraint S=0 for the
ground-state, the only mono-determinantal solution is:

ψ(x1,x2) =
1√
2

[

φ(r1)α(1) φ(r2)α(2)
φ(r1)β(1) φ(r2)β(2)

]

= φ(r1)φ(r2)
α(1)β(2)− α(2)β(1)√

2

and we are back to the form of (Trial 1). The solution we obtain (numerically)
yields: EHF = -5.723 Ry in between (Trial 1) and (Trial 2). We note in
particular that the wavefunction in (Trial 2) can be written as a sum of two
determinants:

ψ(x1,x2) =
A√
2
{
[

f(r1)α(1) f(r2)α(2)
g(r1)β(1) g(r2)β(2)

]

−
[

f(r1)β(1) f(r2)β(2)
g(r1)α(1) g(r2)α(2)

]

}

=⇒ by including several determinants containing ”excited” single-electron or-
bitals, one can improve the GS wavefunction and energy → quantum chem-
istry methods (Couple Cluster, Interaction Configurations (CI), etc.) But CI
quickly expensive as well. The approach widely adopted by a large fraction of
the community is DFT.
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The density functional theory (DFT)

The central idea is to show that the ground-state total energy is a functional
of the charge density n(r) (scalar field and physical obervable) instead of the
many-body wavefunction: E[ψ]→ E[n].

Reminder: H =
∑

i

−1

2
∇i

2 +
N
∑

i=1

vext(ri) +
N
∑

i<j

1

rij

vext(ri) = −
∑

I

ZI

|RI − ri|
=⇒ H =⇒ ψ0

Theorem HK1 Given n(r) the charge density, there exists only one external
potential vext(r) (up to a constant) that can realize n(r) (the reverse statement
is obvious!). By absurdum, let’s assume that:
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vext
1 (r)→ ψ1 → n(r)

vext
2 (r)→ ψ2 → n(r)

then the variational principle applied to H1 = T + V ee + vext
1 yields (non

degenerate GS): EGS
1 < 〈ψ2|H1|ψ2〉 with:

〈ψ2|H1|ψ2 >=< ψ2|H2 + vext
1 − vext

2 |ψ2 >

that is: EGS
1 < EGS

2 +
∫

dr ρ(r)[vext
1 − vext

2 ]

Switching (1) and (2): EGS
2 < EGS

1 +
∫

dr ρ(r)[vext
2 − vext

1 ]
and by addition of the two inequalities:

EGS
1 +EGS

2 < EGS
2 +EGS

1 (absurd)
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Variational principle for E=E[n]

The density n defines in a unique way vext (and N) that is the Hamiltonian.
E is therefore a fonctionnal of n.

E[ψ] = E[n] =

∫

d3rvext(r)n(r) + FHK [n]

FHK [n] = T [n] + V ee[n]

FHK is a universal fonctionnal of n as does not depend on vext. Problem:
we do not know FHK .

Theorem: Given a ”test” density ”ntest(r) ≥ 0” such that
∫

n(r)dr = N ,
then: E[ntest] ≥ EGS .
Variational principle valid for the wavefunctions. Its extension to E[n] derives
from the bijection between n(r) and the GS many-body wavefunction (HK1):
nGS ⇐⇒ vext ⇐⇒ ψGS and ntest ⇐⇒ vext,test ⇐⇒ ψtest

so that: E[ntest] = E[ψtest] ≥ E[ψGS ] = E[nGS ]
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DFT without orbitals: From this variational principle derives a Euler-
Lagrange equation which in principle allows to find n(r) by minimization:

δ

δn(r)
[E[n]− µ[

∫

d3rn(r)−N ]] = 0 =⇒ vext(r) +
δFHK

δn(r)
= µ

with µ the chemical potential associated with conservation of number of par-
ticles. However, FHK not known !!

The Kohn and Sham (KS) approach

Numerous work to find T[n] and Vee[n] (Thomas, Fermi, Slater, Dirac, etc.)
However, the most successful approach is to come back to an ”exact” expres-
sion for the kinetic energy T by re-introducing one-body orbitals. To do that,
KS introduce a fictitious equivalent system of non-interacting electrons un-
der the action of an effective external potential V eff generating the same
density n(r) that the real system:
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n(r) =

∫

|ψ|2dr1...drN ⇐⇒ n(r) =
N
∑

i=1

|φi(r)|2

T [n] =?? ⇐⇒ T0[n] =
N
∑

i=1

< φi|
−∇2

2
|φi >

Ĥ|ψ >= E|ψ > ⇐⇒ [
−∇2

2
+ V eff (r)]φi(r) = εiφi(r)

By regrouping: FHK [n] = T0[n]+J [n]+(T −T0 +V ee−J)[n], the equivalence
between the two systems yields:

V eff (r) = vext(r) +

∫

n(r′)dr′

|r − r′| +
δExc[n]

δn(r)

Thanks to KS, T0, an ”important fraction” of T[n], is calculated exactly. The
unknown part: Exc = (T − T0 + V ee − J) is expected to be rather small.
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Derivation of the ”eigenvalues” equation

To connect the effective potential Veff and EXC , we use the variational prin-
ciple: δΩ[ψi] = 0, with:

Ω[φi] = E[n]−
N
∑

i

N
∑

j

εij

∫

φ∗i (r)φj(r)dr

E[n] = T0[n] + J [n] + EXC [n] +

∫

vext(r)n(r)dr

T0[n] =

N
∑

i

∫

φ∗i (r)(
−∇2

2
)φi(r)dr

where the (εij) variables are the Lagrange parameters associated with the
orthonormalization of the one-body wavefunctions (φi). This leads easily to:

ĥeffφi(r) =
N
∑

j

εijφj(r)
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ĥeff = −∇2/2 + V eff (r)

V eff (r) = vext(r) +

∫

n(r′)dr′

|r − r′| +
δExc[n]

δn(r)

Since (ĥeff ) is hermitian, we can find a unitary transformation that makes
(εij) diagonal while preserving the charge density and thus the energy, etc.
We use the notation: vxc(r) = δExc[n]/δn(r).

REMARK: E[n] is NOT the sum of the eigenvalues:

E =

N
∑

i

εi −
1

2

∫

n(r)n(r′)

|r − r′| drdr
′ +EXC [n]−

∫

vxcn(r)dr

N
∑

i

εi = T0[n] +

∫

V eff (r)n(r)dr

→ difficulty to interpret the εi as electronic excitation energies.
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The local density approximation (LDA)

DFT is a rigorous theory, but EXC is unknown. We need to do approx-
imations. The ”historical” approximation still very very used is the LDA
which consists in introducing a local density of exchange and corre-
lation (XC) energy which only depends on the value of the charge
density n at r:

EXC [n] =

∫

n(r)εXC(r)dr with : εLDA
XC (r) = εLDA

XC (n(r))

vLDA
XC (r) =

δEXC [n]

δn(r)
= εXC(r) + n(r)

δεLDA
XC (n(r))

δn(r)

To go further, the fonction εLDA
XC (n(r)) is obtained thanks to very accurate

simulations (Quantum Monte Carlo=QMC) (Ceperley, Alder, 1986) on a ho-
mogeneous interacting electron gas of density (uniform) nhom=n(r):

εLDA
XC (n(r)) = εQMC

XC (nhom), for different values of nhom.
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For an homogeneous gas, T0(n), J[n] et EX are analytic. By subtraction to
the total energy (numerical QMC values), we obtain the functional EC(n) and
εLDA
C (n) for the correlation energy and energy density. The QMC numerical

values for are usually fitted by some analytic form which is used in the codes
(e.g. Perdew+Zunger fit, PRB 23, 5048 (1981)).
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green=Wigner interpolation formula (1934)
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Figure: Density of correlation energy εC as a function of the reduced Wigner
radius rs/a0, rs such that 1/ne = (4/3)πr3s , ne average electron density.

0-17



Self-consistency

H depends on n(r) that is on the un-
known φi(r): needs self-consistency.

Resolution goes in general through
construction of Hamiltonian matrix
Hα,β =< α|H|β > on a basis {α}
(planewaves, atomic orbitals etc.). Di-
agonalization of Hα,β yields {εi, φi}
(Kohn-Sham) that is a new density n(r)
and potentiel Veff , etc.

n  (r)< α|Η|β>base diago(n) H
(n+1) 
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Why LDA ”is not so bad” ?

The XC hole hxc scales as 1/kF .
One may expect that LDA works if:
∇n/kFn < 1. Actually, this condi-
tion usually does not hold and still
LDA ”works”. Why ??

A) The XC hole satis-
fies the sum rule that:
∫

hLDA
XC (r, r′)dr′ = −1

B) The XC enrgy depends on
the spherical average of hXC .

EXC [n] =
1

2

∫

n(r)hXC(r, r′)

|r − r′| drdr′

=
1

2

∫

n(r)dr

∫ ∞

0

dR 4π hSA
XC(r;R)

hSA
XC(r;R) =

1

4π

∫

Ω:|r−r′|=R

hXC(r, r′)dr′
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Figure: X-hole in a Ne-atom. (Left) n(r,r’) plotted as a function of the
|r− r′| distance (exact and LDA). (Right) The spherical average as a function
of relative distance (see: Gunnarsson et al., PRB 20 3136, 1979).
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Known problems with LDA (amongst others)

The self-interaction (SI) problem
In LDA, an electron interacts with itself (cf. hydrogen). This effect is strong
for localized states (pushed up in energy). This problem does not exist in HF
(SI cancellation between J et K, i.e. Jii = Kii).
=⇒ there exists fonctionals EXC corrected to remove this interaction (SIC:
self-interaction correction). These functionals lead to a vXC which is ”orbital
dependant” =⇒ N4 scaling (expensive).

XC potential in the vacuum; Van der Waals interactions
The XC potential in the vacuum must decay as 1/z (z distance to surface,
molecule; cf. charge image). In LDA, it decays exponentially (as the charge
density). In particular, dispersive interactions (van der Waals, etc.) between
molecules are inexistant within LDA.
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Excitation energies

Experimentaly, the band gap,
electronic affinity, ionization
energy (EI) are obtained as dif-
ferences of total energy, e.g.: EI
= E(N)-E(N-1)

Kohn−Sham

hv e−

detecteur

echantillon

hv

e−

"valeurs propres"

In exact DFT, one can calcu-
late E(N) and E(N-1) (for fi-
nite size systems). What about
LDA ? What is the meaning of
Kohn-Sham ”Lagrange param-
eters” ?

Figure (bottom): band gap in
solids (left) HF (right) DFT-
LDA. (courtesy: Brice Arnaud,
Rennes, France)
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Beyond the LDA: gradient corrections

In LDA, vXC(r) depends only on n(r) (local potential), while we know (cf.
Fock term Kij , van der Waals, etc.) that it must depend on the system at
every point of space (non-locality). One step in this direction may be done by
using ”gradient corrected” functionals:

vLDA
XC ((n(r)) =⇒ vGGA

XC (n(r), s(r)), avec: s(r) =
|∇n(r)|
kFn(r)

These first functionals (GEA) based on ”simple” Taylor expansions were yield-
ing worst results than LDA usually: these fonctionals did not satisfied anymore
sum rules ! Several ”generalized” gradient corrected functionals (GGA) have
been introduced to satisfy these sum rules ... and many other nice properties
(asymptotic long range behavior of vXC , etc.). Are implemented in PWSCF:

• PW91 (Perdew, Wang, PRB 45, 13244 (1992))

• PBE (Perdew, Wang, Ernzerhof, PRL 77, 3865 (1996))
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Rule of thumb: LDA tends to underestimate bond lengths, and overestimate
binding energies and bulk modulus. The GGA functionals do ... the contrary!
(e.g. Dal Corso et al., PRB 53, 1180 (1996); Garcia et al., PRB 46, 9829
(1992)).

Mainly in chemistry (with local orbitals), ”hybrid” functionals, introducing
somme percentage of the non-local exchange (Fock) operator (”orbital” depen-
dent) are used extensively (but more expensive...). A good balance between
Fock energy and local exchange and correlation is ”fitted” to get good results
on a large set of molecules.

LDA+U: with highly localized orbitals (e.g. 3d in transition metals), one
can add an adjustable on-site correlation term named U which acts on the
localized orbitals only. Implemented in PWSCF. Use with care ...

Other approaches aim at introducing non-local orbital-dependent functionals
in a manner which is much more consistent with the DFT Kohn-Sham idea.
They are known under the name ”Optimized Effective Potential” (OPE).
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Appendix A: Practical aspects

A) Instead of diagonalizing the Hamiltonian matrix, one can use variational
principle to minimize E[ci(α)] with ci(α) the coefficients of φi on the {α}
basis (under the condition that the φi are orthonormal). Several techniques:
conjugate gradient, newtonian techniques, damped dynamics, etc. (NOT im-
plemented in PWSCF).

B) A matrix diagonalization (or the orthonormalization constraint in a min-
imization approach) scaled as N3: this is the price associated with DFT cal-
culations. For large hamiltonian matrices (e.g. in a planewave basis), one
compute iteratively the lowest eigenvales and eigenstates (εi, φi) (we really
need only the occupied states to build n(r)). Again several algorythms exists:

In PWSCF, Davidson, DIIS, and conjugate-gradient-like are implemented
(variable ”diagonalisation”). See a discussion in: Kresse and Furthmuller,
PRB 54, 11169 (1996); Štich, Car, Parrinello, Baroni, PRB 39, 4997 (1989);
etc.
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C) Self-consistency and charge density mixing: In the self-consistent
loop, instead of injecting ni to start the (i+1) iteration, one usually uses a
”mixing” of the two previous charge densities: nnew = αni + (1 − α)ni−1,
in order to avoid energy and charge ”sloshing” (the larger the system, the
smaller the α usually). More sophisticated mixing have been developed (pre-
conditioned, Pulay, etc.) In PWSCF: mixing beta is the (1-α) variable and
”mixing mode” selects the type of mixing (plain=Broyden, TF=Thomas-Fermi,
etc.)

Figure: Convergency for a W(100)
surface with simple linear mixing and
Broyden approach (Singh et al., PRB
34, 8391 (1986))
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Planewave (PW) formalism. Bloch theorem and Fourier expansion yields:

ψnk(r) =
1

Ncells
exp(ik·r)unk(r) with: unk(r) =

1√
Ωcell

∑

m

cn,m(k)exp(iGm·r)

Etot =
∑

nk

wnk







∑

m,m′

c∗n,m

[

h̄2

2me
|k + Gm|2δm,m′ + Vext(k + Gm,k + Gm′)

]

cn,m′







+
∑

G

εxc(G)n(G) + 2πe2
∑

G6=0

n(G)2

G2
+ γEwald +

(

∑

s

αs

)

Ne

Ω

(k, wnk) related to Brillouin-zone k-point sampling, Vext(k + Gm,k + Gm′)
the Fourier components of the non-local part of the ionic potential, Ne

Ω the
average density,

See e.g.: Ihm, Zunger, Cohen J. Phys. C: Solid State Phys. 12, 4409 (1979).

0-29



Planewave formalism (2):

• size of PW basis determined by maximum kinetic energy: G ≤ Gmax

with Emax
kin = G2

max (in Ryd). Emax
kin is the ecutwfn variable in PWSCF.

Roughly, 2π/Gmax sets the real-space precision for describing ψnk(r).

• if ψnk(r) have Fourier components up toGmax, then: Vext(k + G,K + G′)
and n(r) (product of ψnk) must be described up to 2Gmax (that is a
maximum kinetic energy 4 times larger: ecutrho parameter in PWSCF).

• XC functionals are expressed in real-space => one use a Fourier trans-
form of the charge density onto a real-space grid: n(G) => n(r), with
spacing ∆r ∼ 2π/2Gmax. (Fast) Fourier transforms are an important
issue when parallelizing codes (communication).

• The (G=0) components of the Hartree, electron-ion and ion-ion energies
diverge. The divergencies cancel up to a constant (γEwald and α terms)
but still a problem of ”zero energy reference” in periodic/planewave
calculations => Kohn-Sham eigenvalues are not referenced with respect
to vacuum level !
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